On the adjacent eccentric distance sum of graphs
Halina Bielak ; Katarzyna Wolska
Annales UMCS, Mathematica, Tome 68 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we show bounds for the adjacent eccentric distance sum of graphs in terms of Wiener index, maximum degree and minimum degree. We extend some earlier results of Hua and Yu [Bounds for the Adjacent Eccentric Distance Sum, International Mathematical Forum. Vol. 7 (2O02) no. 26. 1280-1294]. The adjaceni eccentric distance sum index of the graph G is defined as [...] where ε(υ) is the eccentricity of the vertex υ, deg(υ) is the degree of the vertex υ and D(υ) = ∑u∊v(G) d (u,υ)is the sum of all distances from the vertex υ.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270008
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0001,
     author = {Halina Bielak and Katarzyna Wolska},
     title = {On the adjacent eccentric distance sum of graphs},
     journal = {Annales UMCS, Mathematica},
     volume = {68},
     year = {2015},
     zbl = {1308.05042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0001}
}
Halina Bielak; Katarzyna Wolska. On the adjacent eccentric distance sum of graphs. Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0001/

[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976. | Zbl 1226.05083

[2] Gupta, S., Singh, M., Madan, A. K., Application of graph theory: Relations of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002), 259-268. | Zbl 0987.92021

[3] Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401. | Zbl 1005.92011

[4] Hua, H., Yu, G., Bounds for the Adjacent Eccentric Distance Sum, Int. Math. Forum, 7, no. 26 (2002), 1289-1294. | Zbl 1253.05064

[5] Ilić, A., Eccentic connectivity index, Gutman, I., Furtula, B., (Eds.) Novel Molecular Structure Descriptors - Theory and Applications II, Math. Chem. Monogr., vol. 9, University of Kragujevac, 2010.

[6] Ilić, A., Yu, G., Feng, L., On eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600. | Zbl 1277.05052

[7] Sardana, S., Madan, A. K., Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor, J. Mol. Model 8 (2000), 258-265.

[8] Yu, G., Feng, L., Ilić, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107. [WoS] | Zbl 1282.05077