About the Algebraic Yuzvinski Formula
Anna Giordano Bruno ; Simone Virili
Topological Algebra and its Applications, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

The Algebraic Yuzvinski Formula expresses the algebraic entropy of an endomorphism of a finitedimensional rational vector space as the Mahler measure of its characteristic polynomial. In a recent paper, we have proved this formula, independently fromits counterpart – the Yuzvinski Formula – for the topological entropy proved by Yuzvinski in 1968. In this paper we first compare the proof of the Algebraic Yuzvinski Formula with a proof of the Yuzvinski Formula given by Lind and Ward in 1988, underlying the common ideas and the differences in the main steps. Then we describe several known applications of the Algebraic Yuzvinski Formula, and some related open problems are discussed. Finally,we give a new and purely algebraic proof of the Algebraic Yuzvinski Formula for the intrinsic algebraic entropy.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276015
@article{bwmeta1.element.doi-10_1515_taa-2015-0008,
     author = {Anna Giordano Bruno and Simone Virili},
     title = {About the Algebraic Yuzvinski Formula},
     journal = {Topological Algebra and its Applications},
     volume = {3},
     year = {2015},
     zbl = {06377569},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0008}
}
Anna Giordano Bruno; Simone Virili. About the Algebraic Yuzvinski Formula. Topological Algebra and its Applications, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0008/

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. | Zbl 0127.13102

[2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. | Zbl 0212.29201

[3] D. Dikranjan and A. Giordano Bruno, Entropy on Abelian groups, submitted ; arXiv:1007.0533. | Zbl 06591707

[4] D. Dikranjan and A. Giordano Bruno, The Bridge Theorem for totally disconnected LCA groups, Topology Appl. 169 (2014) no. 1, 21–32. [WoS] | Zbl 1322.37007

[5] D. Dikranjan and A. Giordano Bruno, Limit free computation of entropy, Rend. Istit.Mat. Univ. Trieste 44 (2012), 297–312. | Zbl 1277.37031

[6] D. Dikranjan and A. Giordano Bruno, Topological entropy and algebraic entropy for group endomorphisms, Proceedings ICTA2011 Islamabad, Pakistan July 4-10 2011 Cambridge Scientific Publishers, 133–214. | Zbl 1300.54002

[7] D. Dikranjan and A. Giordano Bruno, The connection between topological and algebraic entropy, Topology Appl. 159 (2012) no.13, 2980–2989. [WoS] | Zbl 1256.54061

[8] D. Dikranjan and A. Giordano Bruno, The Pinsker subgroup of an algebraic flow, J. Pure Appl. Algebra 216 (2012) no.2, 364–376. [WoS] | Zbl 1247.37014

[9] D. Dikranjan, A. Giordano Bruno, L. Salce and S.Virili, Intrinsic algebraic entropy, J. Pure Appl. Algebra 219 (2015) 2933– 2961. [WoS] | Zbl 06409606

[10] D. Dikranjan, B. Goldsmith, L. Salce and P. Zanardo, Algebraic entropy for Abelian groups, Trans. Amer. Math. Soc. 361 (2009), 3401–3434. | Zbl 1176.20057

[11] D. Dikranjan, K. Gong and P. Zanardo, Endomorphisms of Abelian groups with small algebraic entropy, Linear Algebra Appl. 439 (2013) no.7, 1894–1904. [WoS] | Zbl 1320.37013

[12] D. Dikranjan, M. Sanchis and S. Virili, New and old facts about entropy on uniform spaces and topological groups, Topology Appl. 159 (2012) no.7, 1916–1942. [WoS] | Zbl 1242.54005

[13] M. Einsiedler and T. Ward, Ergodic Theory (with a view towards Number Theory), Graduate Texts in Mathematics Volume 259, 2011. [WoS] | Zbl 1206.37001

[14] G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer Verlag, 1999. | Zbl 0919.11064

[15] A. Giordano Bruno and S. Virili, Algebraic Yuzvinski Formula, J. Algebra 423 (2015) 114–147. [WoS] | Zbl 06377569

[16] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin-Heidelberg-New York, 1963. | Zbl 0115.10603

[17] E. Hironaka, What is. . .Lehmer’s number?, Not. Amer. Math. Soc. 56 (2009) no. 3, 374–375. | Zbl 1163.11069

[18] B. M. Hood, Topological entropy and uniform spaces, J. London Math. Soc. (2) 8 (1974), 633–641. [Crossref] | Zbl 0291.54051

[19] I. Kaplansky, Infinite Abelian groups, University of Michigan Publications in Mathematics, no. 2, Ann Arbor, University of Michigan Press, 1954. | Zbl 0057.01901

[20] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Second Edition, Graduate Texts in Mathematics 58, Springer-Verlag New York, Berlin, Heidelberg, Tokyo, 1984. | Zbl 0364.12015

[21] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coeflcienten, Jour. Reine Angew. Math. 53 (1857), 173–175.

[22] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), 461-479. | Zbl 0007.19904

[23] D. A. Lind and T. Ward, Automorphisms of solenoids and p-adic entropy, Ergod. Th. & Dynam. Sys. 8 (1988), 411–419. | Zbl 0634.22005

[24] K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341–344. | Zbl 0105.06301

[25] M. J. Mossinghoff, Lehmer’s Problem web page, http://www.cecm.sfu.ca/ mjm/Lehmer/lc.html.

[26] J. Peters, Entropy on discrete Abelian groups, Adv. Math. 33 (1979), 1–13. | Zbl 0421.28019

[27] J. Peters, Entropy of automorphisms on L.C.A. groups, Pacific J. Math. 96 (1981) no.2, 475–488. | Zbl 0478.28010

[28] F. Quadros Gouvêa, p-adic numbers: an introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1997.

[29] C. Smyth, TheMahler measure of algebraic numbers: a survey. Number theory and polynomials, 322–349, LondonMath. Soc. Lecture Note Ser., 352, Cambridge Univ. Press, Cambridge, 2008. | Zbl 1334.11081

[30] L. N. Stojanov, Uniqueness of topological entropy for endomorphisms on compact groups, Boll. Un. Mat. Ital. B 7 (1987) no. 3, 829–847. | Zbl 0648.22002

[31] S. Virili, Entropy for endomorphisms of LCA groups, Topology Appl. 159 (2012) no.9, 2546–2556. | Zbl 1243.22007

[32] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New-York, 1982. | Zbl 0475.28009

[33] M. D. Weiss, Algebraic and other entropies of group endomorphisms, Math. Systems Theory 8 (1974/75) no.3, 243–248. | Zbl 0298.28014

[34] A. Weil, Basic Number Theory, third edition, Springer Verlag, New York (1974).

[35] S. A. Yuzvinski, Metric properties of endomorphisms of compact groups, Izv. Acad. Nauk SSSR, Ser.Mat. 29 (1965), 1295– 1328 (in Russian). English Translation: Amer. Math. Soc. Transl. (2) 66 (1968), 63–98.

[36] S. A. Yuzvinski, Computing the entropy of a group endomorphism, Sibirsk.Mat. Z. 8 (1967), 230–239 (in Russian). English Translation: Siberian Math. J. 8 (1968), 172–178.

[37] P. Zanardo, Yuzvinski’s Formula, unpublished notes.