Necessary and sufficient conditions to ensure that the direct sum of two Abelian groups with zero entropy is again of zero entropy are still unknown; interestingly the same problem is also unresolved for direct sums of Hopfian and co-Hopfian groups.We obtain sufficient conditions in some situations by placing restrictions on the homomorphisms between the groups. There are clear similarities between the various cases but there is not a simple duality involved.
@article{bwmeta1.element.doi-10_1515_taa-2015-0007, author = {Brendan Goldsmith and Ketao Gong}, title = {Algebraic entropies, Hopficity and co-Hopficity of direct sums of Abelian Groups}, journal = {Topological Algebra and its Applications}, volume = {3}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0007} }
Brendan Goldsmith; Ketao Gong. Algebraic entropies, Hopficity and co-Hopficity of direct sums of Abelian Groups. Topological Algebra and its Applications, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0007/
[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological Entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. | Zbl 0127.13102
[2] R. Baer, Groups without proper isomorphic quotient groups, Bull. Amer. Math. Soc. 50 (1944), 267-278. | Zbl 0061.02806
[3] G. Baumslag, Hopficity and Abelian Groups, in Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ.), Scott Foresman and Co., Chicago, 1963. pp.331-335.
[4] A. L. S. Corner, Three examples on hopficity in torsion-free abelian groups, Acta Math. Hungarica 16, No. 3-4(1965), 303-310. [Crossref] | Zbl 0145.03302
[5] A. L. S. Corner, On Endomorphism Rings of Primary Abelian Groups, Quart. J. Math. Oxford.(2) 20, (1969), 277-296. [Crossref] | Zbl 0205.32506
[6] D. Dikranjan, A. Giordano Bruno and L. Salce, Adjoint Algebraic Entropy, J. Algebra 324(2010), 442-463. [WoS]
[7] D. Dikranjan, B. Goldsmith, L. Salce and P. Zanardo, Algebraic Entropy for Abelian Groups, Tran. Amer. Math. Soc. 361, No. 7(2009), 3401-3434. | Zbl 1176.20057
[8] L. Fuchs, Infinite Abelian Groups, Vol I, II, Academic Press, 1970 and 1973. | Zbl 0209.05503
[9] B. Goldsmith, K. Gong, On Adjoint Entropy of Abelian Groups, Comm. Algebra 40, No. 3(2012), 972-987. [Crossref] | Zbl 1247.20065
[10] Goldsmith and K. Gong, A note on Hopfian and co-Hopfian Abelian groups, Contemporary Maths. Vol. 576, 2012. Series editors: M. Droste, L. Fuchs, L. Strügmann, K. Tent and M. Ziegler. | Zbl 1258.20044
[11] B. Goldsmith and P. Vámos, The Hopfian Exponent of an Abelian Group, to appear in the special volume of Periodica Math. Hungarica dedicated to László Fuchs. | Zbl 1322.20047
[12] K. Gong, Entropy in Abelian Groups, Doctoral Thesis, School ofMathematical Sciences, Dublin Institute of Technology, 2012.
[13] P. Griflth, Purely indecomposable torsion-free groups, Proc. Amer. Math. Soc. 18(1967), 738-742. | Zbl 0154.26802
[14] R. Hirshon, Some Theorems On Hopficity, Tran. Amer. Math. Soc. 141(1969), 229-244. | Zbl 0186.32002
[15] Y. Li, On the cohopficity of the direct product of cohopfian groups, Comm. Algebra 35, (2007), 3226-3235. [Crossref] | Zbl 1187.20025
[16] J. Peters, Entropy on Discrete Abelian Groups, Adv. Math. 33(1979), 1-13. | Zbl 0421.28019
[17] R. S. Pierce, Homomorphisms of primary Abelian groups, in Topics in Abelian Groups, Scott Foresman (1963) 215 - 310.
[18] L. Salce, P. Vámos, S. Virili, Length functions, multiplicities and algebraic entropy, Forum Math. 25, No. 2(2013), 255-282. [WoS] | Zbl 1286.16002
[19] L. Salce and P. Zanardo, Abelian groups of zero adjoint entropy Colloq. Math. 121, (2010), 45-62. [WoS] | Zbl 1239.20071
[20] W. Vasconcelos, Injective Endomorphisms of Finitely Generated Modules, Proc. Amer. Math. Soc. 25, (1970), 900-901. | Zbl 0197.31404
[21] M. D. Weiss, Algebraic and Other Entropies of Group Endomorphisms, Math. Systems. Theory. Vol. 8, No. 3. 243-248. [Crossref] | Zbl 0298.28014
[22] P. Zanardo, Multiplicative invariants and length functions over valuation domains, J. Commut. Algebra. Vol 3, No. 4 (2011), 561-587. | Zbl 1250.13016