Discrete dynamical systems are given by the pair (X, f ) where X is a compact metric space and f : X → X a continuous maps. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications other conditions on X and f have been considered. For example X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded jumps on the values of f or even non-bounded jumps). Such systems are interesting from theoretical point of view in Topological Dynamics and appear frequently in applied sciences such as Electronics and Control Theory. In this paper we are dealing mainly with the original ideas of entropy in Thermodinamics and their evolution until the appearing in the twenty century of the notions of Shannon and Kolmogorov-Sinai entropies and the subsequent topological entropy. In turn such notions have to evolve to other recent situations where it is necessary to give some extended versions of them adapted to the new problems.
@article{bwmeta1.element.doi-10_1515_taa-2015-0006, author = {Francisco Balibrea}, title = {On the origin and development of some notions of entropy}, journal = {Topological Algebra and its Applications}, volume = {3}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0006} }
Francisco Balibrea. On the origin and development of some notions of entropy. Topological Algebra and its Applications, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0006/
[1] Adler R.L., Konheim A.G. and McAndrew M.H., Topological entropy, Trans.Am.Math.Soc. 114-309 (1965). [WoS] | Zbl 0127.13102
[2] Alsedá L. Llibre J. and Misiurewicz M.Combinatorial dynamics and entropy in dimension one, Advances Series in Nonlinear Dynamics, World Scientific, Singapore (1993). | Zbl 0843.58034
[3] Amigó J.M. and Giménez A. A simplified algorithm for the topological entropy of multimodal maps, Entropy, 16(2), (2014), 627-644.
[4] Balibrea F. and Oprocha P., Weak mixing and chaos in nonautonomous discrete systems, Applied Mathematical Letters, 25 (2012), 1135-1141. | Zbl 1246.39004
[5] Block L., Guckenheimer J., Misiurewicz M. and Young L.S. Periodic orbits and topological entropy of one-dimensional maps Global Theory of Dynamical Systems, Lecture Notes in Math.,vol 819, Springer-Verlag, New York, (1980), 18-34. | Zbl 0447.58028
[6] Block L., Keesling J., Li S. and Peterson K. An Improved Algorithm for Computing Topological Entropy, Journal of Statistical Physics, 55(5/6), (1989), 929-939. | Zbl 0714.54018
[7] Blokh A., On sensitive mappings of the interval, Russian Math.Surveys, 37:2 (1982), 189-190. [Crossref] | Zbl 0501.28010
[8] Balmforth N.J. and Spiegel E.A. Topological entropy of ene-dimensional maps: approximations and bounds, Physical Review Letters. vol 72, number 1, (1994), 80-83.
[9] Boltzmann L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Wiener Berichte 66, (1872), 275-370
[10] Boltzmann L. Bermerkungen über einige Probleme der mechanische Wärmetheorie, Wiener Berichte, 75: 62-100; in WA II, paper 39 (1877).
[11] Boltzmann L. Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht, Wiener Berichte, 76: 373-435; in WA II, paper 42(1877).
[12] Bowen R., Entropy for group of endomorphisms and homogeneous spaces, Trans.Am.Math.Soc. 153, 401-414 (1971); Errata: 181(1973), 509-510. | Zbl 0212.29201
[13] Brandaõ P. On the structure of Lorenz maps, arXiv: 1402.2862vi [math.DS], 12/02/2014.
[14] Carnot S., Reflections on the Motive Power of Fire and on Machines Fitted to develop that power, Paris: Bachelier. French title: Réflections sur la puissance motrice du feu et sur les machines propres à développer cette puissance.
[15] Clausius R., Über die bewegende Kraft der Wärme, Part I, Part II, Annalen der Physik, 79, (1850) 368-397, 500-524. English translation: On the moving Force of Heat and the Laws regarding the Nature of Heat itself which are deducible therefrom, Phil.Mag. (1851),2, 1-21, 102-119.
[16] Collet P., Crutchfield P. and Eckmann J.P.Computing the topological entropy of maps, Communications in Mathematical Physics, 88(2), (1983), 257-262. | Zbl 0529.58029
[17] Downarowicz T. Entropy in Dynamical Systems, New Mathematical Monographs, number 18,Cambridge University Press (2011)
[18] Gantmacher W.F. Theory of Matrices, Vol 1, Chelsea Publishing Co. (1959). | Zbl 0085.01001
[19] Glendining P. and Hall T., Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity 9 (1996), 999-1014. | Zbl 0896.58048
[20] Gomez P., Franco N, or Silva L., Syllabe Permutations and Hyperbolic Lorenz Knots, to appear in Applied Mathematics and Information Sciences.
[21] Gressman P. and Strain M., Global existence of classical solutions and rapid time decay Proccedings of the National Academy of Sciences of the U.S.A., Vol 107, no. 13, (2010), 5744-5749. | Zbl 1205.82120
[22] Gressman P. and Strain M.,Global classical solutions of the Boltzmann equation with angular cut-off, J.Amer.Math.Soc. 24 (2011), 771-847. [WoS][Crossref] | Zbl 1248.35140
[23] Góra P. and Boyarsky A., Computing the topological entropy of general one-dimensional maps, Trans.Am.Math.Soc., 323,1, (1991), 39-49. | Zbl 0724.28009
[24] Hasselblatt B. and Katok A., Principal structures in Handbook of Dynamical Systems, North-Holland, Amsterdam IA, (2002), 1-208.
[25] Hsu C.S. and Kim M.C., On topological entropy, Pys. Rev. A, 31, (1985), 3253-3260.
[26] Katok A., Fifty years on entropy in dynamics: 1958-2007, Journal of Modern Dynamics, Volume 1, No. 4, (2007), 545-596. | Zbl 1149.37001
[27] Katok A. and Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge, (1995). | Zbl 0878.58020
[28] Kawan C. Metric entropy of non-autonomous dynamical systems (arXiv:1304.5682v2 [math.DS] (2013).
[29] Kolyada S. and Snoha L., Topological entropy of non-autonomous dynamical systems, Random and Computational Dynamics, 4, (1996), 205-233. | Zbl 0909.54012
[30] Kolmogorov A.N., On dynamical systems with an integral invariant on the torus, Doklady Akademii Nauk. SSSR (N.S.), 93 (1953), 763-766. | Zbl 0052.31904
[31] Lind D. and Marcus B. An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, reprinted in (1999).
[32] Misiurewicz M. and Szlenk W. Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. | Zbl 0445.54007
[33] Milnor J. and Thurston W. Dynamical Systems, Lecture Notes in Mathematics 1342, Edited by A.Dold and B.Eckmann, Springer-Verlag (1988).
[34] Oliveira H., Symbolic dynamics of odd discontinuous bimodal maps, to appear in Applied Mathematics and Information Sciences.
[35] Peris. A. Transitivity, dense orbits and discontinuous functions, Bull. Belg. Math. Soc. 6(1999), 391-394. | Zbl 0988.37018
[36] Shannon C. A Mathematical theory of communication, Bell System Tech., (1948), 379-423, 623-656. | Zbl 1154.94303
[37] Walters P. An Introduction to Ergodic Theory, Springer Graduate Texts in Math., 79, New-York, (1982). | Zbl 0475.28009
[38] Smorodinsky M. Information, entropy and Bernouilli systems, Development of mathematics 1950-2000, Birkhäuser, Basel (2000).
[39] Tsallis C., Introduction to Non-extensive Statistical Mechanics- Approaching a Complex World, Springer-Verlag, New-York (2009).
[40] Tsallis C., The Nonadditivite Entropy Sq and Its Applications in Physics and Elsewhere: Some Remarks, Entropy, Vol 13, (2011), 1765-1804. [WoS] | Zbl 1301.82004