When the intrinsic algebraic entropy is not really intrinsic
Brendan Goldsmith ; Luigi Salce
Topological Algebra and its Applications, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

The intrinsic algebraic entropy ent(ɸ) of an endomorphism ɸ of an Abelian group G can be computed using fully inert subgroups of ɸ-invariant sections of G, instead of the whole family of ɸ-inert subgroups. For a class of groups containing the groups of finite rank, aswell as those groupswhich are trajectories of finitely generated subgroups, it is proved that only fully inert subgroups of the group itself are needed to comput ent(ɸ). Examples show how the situation may be quite different outside of this class.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275888
@article{bwmeta1.element.doi-10_1515_taa-2015-0005,
     author = {Brendan Goldsmith and Luigi Salce},
     title = {When the intrinsic algebraic entropy is not really intrinsic},
     journal = {Topological Algebra and its Applications},
     volume = {3},
     year = {2015},
     zbl = {1326.37006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0005}
}
Brendan Goldsmith; Luigi Salce. When the intrinsic algebraic entropy is not really intrinsic. Topological Algebra and its Applications, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0005/

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. | Zbl 0127.13102

[2] S. Breaz, Finite torsion-free rank endomorphism ring, Carpathian J. Math. 31 (2015), no. 1, 39-43. | Zbl 06558051

[3] U. Dardano, S. Rinauro, Inertial automorphisms of an Abelian group, Rend. Sem. Mat. Univ. Padova 127 (2012), 213–233. | Zbl 1254.20041

[4] D. Dikranjan, A. Giordano Bruno, Topological entropy and algebraic entropy for group endomorphisms, Arhangelski˘ı A. V., Moiz ud Din Khan; Kocinac L., ed., Proceedings Islamabad ICTA 2011, Cambridge Scientific Publishers 133–214. | Zbl 1300.54002

[5] D. Dikranjan, A. Giordano Bruno, Entropy for Abelian groups, preprint arXiv:1007.0533. | Zbl 06591707

[6] D.Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, Intrinsic algebraic entropy, J. Pure Appl. Algebra 219 (2015), no. 7, 2933- 2961. [WoS] | Zbl 06409606

[7] D.Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, Fully inert subgroups of divisible Abelian groups, J. Group Theory 16 (6) (2013), 915-939. [WoS] | Zbl 1292.20062

[8] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy of endomorphisms of Abelian groups, Trans. Amer.Math. Soc. 361 (2009), 3401–3434. | Zbl 1176.20057

[9] D. Dikranjan, L. Salce, P. Zanardo, Fully inert subgroups of free Abelian groups, Periodica Math. Hungarica 69 (2014), no. 1, 69-78. [WoS][Crossref] | Zbl 1322.20046

[10] P. Eklof, A. Mekler, Almost Free Modules. Set-Theoretic Methods, North-Holland, Amsterdam, 2002. | Zbl 1054.20037

[11] L. Fuchs, Infinite Abelian Groups, Vol. I and II, Academic Press, 1970 and 1973. | Zbl 0209.05503

[12] A. Giordano Bruno, S. Virili, The Algebraic Yuzvinski Formula, J. Algebra 423 (2015), 114-147. | Zbl 06377569

[13] B. Goldsmith, K. Gong, A Note on Hopfian and co-Hopfian Abelian Groups, Contemporary Mathematics Vol. 576 (2012), 129– 136. | Zbl 1258.20044

[14] B. Goldsmith, P. Vámos, The Hopfian Exponent of an Abelian Group, Periodica Math. Hungarica 69 (2014), no. 1, 21-31. [WoS] | Zbl 1322.20047

[15] B. Goldsmith, L. Salce, P. Zanardo, Fully inert submodules of torsion-free modules over the ring of p-adic integers, Colloquium Math. 136 (2014), no. 2, 169-178. [WoS] | Zbl 1304.13018

[16] B. Goldsmith, L. Salce, P. Zanardo, Fully inert subgroups of Abelian p-groups, J. Algebra 419 (2014), 332-349. | Zbl 1305.20063

[17] I. Kaplansky, Infinite Abelian Groups, (revised edition), The University of Michigan Press, 1969. | Zbl 0194.04402

[18] J. Peters, Entropy on discrete Abelian groups, Adv. Math. 33 (1979), 1-13. | Zbl 0421.28019

[19] L. Salce, P. Vámos, S. Virili Length functions, multiplicities and algebraic entropy, Forum Math. 25 (2013), no. 2, 255-282. | Zbl 1286.16002

[20] S. A. Yuzvinski, Metric properties of endomorphisms of compact groups, Izv. Acad. Nauk SSSR, Ser. Mat. 29 (1965), 1295– 1328 (in Russian). English Translation: Amer. Math. Soc. Transl. (2) 66 (1968), 63–98.