Algebraic entropy for valuation domains
Paolo Zanardo
Topological Algebra and its Applications, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Let R be a non-discrete Archimedean valuation domain, G an R-module, Φ ∈ EndR(G).We compute the algebraic entropy entv(Φ), when Φ is restricted to a cyclic trajectory in G. We derive a special case of the Addition Theorem for entv, that is proved directly, without using the deep results and the difficult techniques of the paper by Salce and Virili [8].

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271758
@article{bwmeta1.element.doi-10_1515_taa-2015-0004,
     author = {Paolo Zanardo},
     title = {Algebraic entropy for valuation domains},
     journal = {Topological Algebra and its Applications},
     volume = {3},
     year = {2015},
     zbl = {06506783},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0004}
}
Paolo Zanardo. Algebraic entropy for valuation domains. Topological Algebra and its Applications, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_taa-2015-0004/

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. | Zbl 0127.13102

[2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. | Zbl 0212.29201

[3] D. Dikranjan, A. Giordano Bruno, Discrete dynamical systems in group theory, Note Mat. 33 (2013), no. 1, 1–48. | Zbl 1280.37023

[4] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy for abelian groups, Trans. Amer.Math. Soc. 361 (2009), no. 7, 3401–3434. | Zbl 1176.20057

[5] L. Fuchs, L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84. American Mathematical Society, Providence, RI, 2001. | Zbl 0973.13001

[6] D.G. Northcott, M. Reufel, A generalization of the concept of length, Quart. J. Math. Oxford (2) 16 (1965) 297–321. | Zbl 0129.02203

[7] L. Salce, P. Vámos, S. Virili, Length functions, multiplicities and algebraic entropy, ForumMath. 25 (2013), no. 2, 255–282. | Zbl 1286.16002

[8] L. Salce, S. Virili, The addition theorem for algebraic entropies induced by non-discrete length functions, to appear.

[9] L. Salce, P. Zanardo, Finitely generated modules over valuation rings, Comm. Algebra 12 (1984), no. 15-16, 1795–1812. [Crossref] | Zbl 0539.13007

[10] L. Salce, P. Zanardo, A general notion of algebraic entropy and the rank-entropy, Forum Math. 21 (2009), no. 4, 561–587. [WoS] | Zbl 1203.20048

[11] P. Vámos, Length functions on modules, Ph.D. thesis, University of Shefleld, 1968. | Zbl 0153.37101

[12] P. Vámos, Additive functions and duality over Noetherian rings, Quart. J. Math. Oxford Ser. (2) 19 (1968) 43–55. [Crossref] | Zbl 0153.37101

[13] S. Virili, Length functions of Grothendieck categories with applications to infinite group representations, arXiv: 1410.8306.

[14] M. D. Weiss, Algebraic and other entropies of group endomorphisms,Math. Systems Theory, 8 (1974/75), no. 3, 243–248. | Zbl 0298.28014

[15] P. Zanardo, Multiplicative invariants and length functions over valuation domains, J. Commut. Algebra 3 (2011), no. 4, 561–587. [WoS][Crossref] | Zbl 1250.13016