Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix
Hiroshi Kurata ; Ravindra B. Bapat
Special Matrices, Tome 4 (2016), p. 270-282 / Harvested from The Polish Digital Mathematics Library

By a hollow symmetric matrix we mean a symmetric matrix with zero diagonal elements. The notion contains those of predistance matrix and Euclidean distance matrix as its special cases. By a centered symmetric matrix we mean a symmetric matrix with zero row (and hence column) sums. There is a one-toone correspondence between the classes of hollow symmetric matrices and centered symmetric matrices, and thus with any hollow symmetric matrix D we may associate a centered symmetric matrix B, and vice versa. This correspondence extends a similar correspondence between Euclidean distance matrices and positive semidefinite matrices with zero row and column sums.We show that if B has rank r, then the corresponding D must have rank r, r + 1 or r + 2. We give a complete characterization of the three cases.We obtain formulas for the Moore-Penrose inverse D+ in terms of B+, extending formulas obtained in Kurata and Bapat (Linear Algebra and Its Applications, 2015). If D is the distance matrix of a weighted tree with the sum of the weights being zero, then B+ turns out to be the Laplacian of the tree, and the formula for D+ extends a well-known formula due to Graham and Lovász for the inverse of the distance matrix of a tree.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285882
@article{bwmeta1.element.doi-10_1515_spma-2016-0028,
     author = {Hiroshi Kurata and Ravindra B. Bapat},
     title = {Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix},
     journal = {Special Matrices},
     volume = {4},
     year = {2016},
     pages = {270-282},
     zbl = {1342.15026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0028}
}
Hiroshi Kurata; Ravindra B. Bapat. Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix. Special Matrices, Tome 4 (2016) pp. 270-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0028/

[1] R. Balaji and R. B. Bapat, On Euclidean distance matrices, Linear Algebra Appl., 424 (2007), 108-117. | Zbl 1118.15024

[2] R. B. Bapat, Graphs and matrices (2nd ed.), Springer, 2014. | Zbl 1301.05001

[3] R. B. Bapat, S. J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl., 401 (2005), 193- 209. | Zbl 1064.05097

[4] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, 1974. | Zbl 0305.15001

[5] F. Critchley, On certain linear mappings between inner products and squared distance matrices, Linear Algebra Appl., 105 (1988), 91-107. | Zbl 0644.15003

[6] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl., 67 (1985),81-97. [WoS] | Zbl 0569.15016

[7] R. L. Graham and L. Lovász, Distance matrix polynomials of trees, Adv. Math., 29 (1978), no. 1, 60-88.

[8] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Technology Journal, 50 (1971), 2495-2519. | Zbl 0228.94020

[9] C. R. Johnson and P. Tarazaga, Connections between the real positive semidefinite and distancematrices completion problems, Linear Algebra Appl., 223/224 (1995), 375-391. | Zbl 0827.15032

[10] H. Kurata and R. B. Bapat, Moore-Penrose inverse of a Euclidean distancematrix, Linear Algebra Appl., 472 (2015), 106-117. | Zbl 1310.15060

[11] I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert” Ann. of Math. (2), 36, 1935, 724-732. | Zbl 0012.30703

[12] P. Tarazaga, T. L. Hayden and J. Wells, Circum-Euclidean distance matrices and faces, Linear Algebra Appl., 232 (1996), 77-96. [WoS] | Zbl 0837.15014