The late Professor Yanai has contributed to many fields ranging from aptitude diagnostics, epidemiology, and nursing to psychometrics and statistics. This paper reviews some of his accomplishments in multivariate analysis through his collaborative work with the present author, along with some untold episodes for the inception of key ideas underlying the work. The various topics covered include constrained principal component analysis, extensions of Khatri’s lemma, theWedderburn-Guttman theorem, ridge operators, generalized constrained canonical correlation analysis, and causal inference. A common thread running through all of them is projectors and singular value decomposition, which are the main subject matters of a recent monograph by Yanai, Takeuchi, and Takane [60].
@article{bwmeta1.element.doi-10_1515_spma-2016-0027, author = {Yoshio Takane}, title = {Professor Haruo Yanai and multivariate analysis}, journal = {Special Matrices}, volume = {4}, year = {2016}, pages = {283-295}, zbl = {06603187}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0027} }
Yoshio Takane. Professor Haruo Yanai and multivariate analysis. Special Matrices, Tome 4 (2016) pp. 283-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0027/
[1] U. Böckenholt, I. Böckenholt, Canonical analysis of contingency tables with linear constraints, Psychometrika, 55 (1990), 633–639. [Crossref]
[2] M. T. Chu, R. E. Funderlic, G. H. Golub, A rank-one reduction formula and its applications to matrix factorizations, SIAM Review, 37 (1995), 512–530. [Crossref] | Zbl 0844.65033
[3] R. E. Cline, R. E. Funderlic, The rank of a difference of matrices and associated generalized inverses, Linear Algebra Appl., 24 (1979), 185–215. [Crossref] | Zbl 0393.15005
[4] W. G. Cochran, The distribution of quadratic forms in a normal system with applications to analysis of covariance, Proc. Camb. Phil. Soc., 30 (1934), 178–191. [Crossref] | Zbl 0009.12004
[5] A. Galantai, A note on generalized rank reduction, Act. Math. Hung., 116 (2007), 239–246. [Crossref] | Zbl 1135.15300
[6] L. Guttman, General theory and methods for matric factoring, Psychometrika, 9 (1944), 1–16. [Crossref] | Zbl 0060.31212
[7] L. Guttman, A necessary and sufficient formula for matric factoring, Psychometrika, 22 (1957), 79–81. [Crossref] | Zbl 0080.13202
[8] F. R. Helmert, Adjustment Computations by the Method of Least Squares (in German), 2nd Edition (Teubnei, Leipzig, 1907).
[9] A. E. Hoerl, R. W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55–67. [Crossref] | Zbl 0202.17205
[10] L. Hubert, J. Meulman, W. J. Heiser, Two purposes of matrix factorization: A historical appraisal, SIAM Review, 42 (2000), 68–82. [Crossref] | Zbl 0999.65014
[11] H. Hwang, Y. Takane, Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling (Chapman and Hall/CRC Press, Boca Raton, FL., 2014). | Zbl 1341.62033
[12] C. G. Khatri, A simplified approach to the derivation of the theorems on the rank of a matrix, J. of the Maharaja Sayajirao University of Baroda 10 (1961), 1–5.
[13] C. G. Khatri, A note on a MANOVA model applied to problems in growth curve, Ann. I. Stat. Math., 18 (1966), 75–86. | Zbl 0136.40704
[14] C. G. Khatri, Some properties of BLUE in a linear model and canonical correlations associated with linear transformations, J. Multivariate Anal., 34 (1990), 211–226. [Crossref] | Zbl 0731.62116
[15] L. R. LaMotte, A direct derivation of the REML likelihood function, Stat. Pap., 48 (2007), 321–327. [Crossref] | Zbl 1110.62078
[16] R. J. Light, B. H. Margolin, An analysis of variance of categorical data, J. Am. Stat. Assoc., 66 (1971), 534–544. [Crossref] | Zbl 0222.62035
[17] S. Loisel, Y. Takane, Partitions of Pearson’s chi-square statistic for frequency tables: A comprehensive account, Computation. Stat., in press. | Zbl 1348.65034
[18] T. Ogasawara, M. Takahashi, Indepedence of quadratic forms in normal system, J. Sci. Hiroshima University, 15 (1951), 1–9. | Zbl 0045.41102
[19] K. Pearson, On the criterion that a given system of deviation from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Philos. Mag., 50 (1900), 157–172. | Zbl 31.0238.04
[20] R. F. Potthoff, S. N. Roy, A generalized multivariate analysis of variance model useful for growth curve problem, Biometrika, 51 (1964), 313–326. [Crossref] | Zbl 0138.14306
[21] S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix Tricks for Linear Statistical Models (Springer, Berlin, 2011). | Zbl 1291.62014
[22] J. O. Ramsay, B. M. Silverman, Functional Data Analysis, Second Edition (Springer, New York, 2005). | Zbl 1079.62006
[23] C. R. Rao, Linear Statistical Inference and Its Applications, Second Edition (Wiley, New York, 1973). | Zbl 0256.62002
[24] C. R. Rao, S. K. Mitra, Generalized Inverse of Matrices amd Its Applications (Wiley, New York, 1971). | Zbl 0236.15004
[25] C. R. Rao, H. Yanai, General definition and decomposition of projectors and some applications to statistical problems, J. Stat. Plan. Infer., 3 (1979), 1–17. [Crossref] | Zbl 0427.62046
[26] B. Schaffrin, Personal communication (2015).
[27] G. F. A. Seber, Multivariate Observations (Wiley, New York, 1984.) | Zbl 0627.62052
[28] A. Shapiro, Asymptotic theory of overparameterized structural models, J. Am. Stat. Assoc., 81 (1986), 142–149. [Crossref] | Zbl 0596.62069
[29] Y. Takane, Relationships among various kinds of eigenvalue and singular value decompositions, In: H. Yanai, A. Okada, K. Shigemasu, Y. Kano, and J. Meulman (Eds.), New Developments in Psychometrics (Springer, Tokyo, 2003), 45–56.
[30] Y. Takane, More on regularization and (generalized) ridge operators, In: K. Shigemasu, A. Okada, T. Imaizumi, T. Hoshino (Eds.), New Trends in Psychometrics (University Academic Press, Tokyo, 2008) 443–452.
[31] Y. Takane, Constrained Principal Component Analysis and Related Techniques (Chapman and Hall/CRC Press, Boca Raton, FL, 2013).
[32] Y. Takane, M. A. Hunter, Constrained principal component analysis: A comprehensive theory, Appl. Algebr. Eng. Comm., 12 (2001), 391–419. [Crossref] | Zbl 1040.62050
[33] Y. Takane, M. A. Hunter, New family of constrained principal component analysis (CPCA), Linear Algebra Appl., 434 (2011), 2539–2555. | Zbl 1214.62070
[34] Y. Takane, H. Hwang, Generalized constrained canonical correlation analysis, Multivar. Behav. Res., 37 (2002), 163–195. [Crossref]
[35] Y. Takane, H. Hwang, Regularized multiple correspondence analysis. In: J. Blasius, M. J. Greenacre (Eds.), Multiple correspondence analysis and related methods (Chapman and Hall, London, 2006) 259–279. | Zbl 1277.62161
[36] Y. Takane, S. Jung, Regularized partial and/or constrained redundancy analysis, Psychometrika, 73 (2008), 671–690. [Crossref] | Zbl 1284.62751
[37] Y. Takane, S. Jung, Regularized nonsymmetric correspondence analysis, Comput. Stat. Data An., 53 (2009), 3159–3170. [Crossref] | Zbl 05689078
[38] Y. Takane, S. Jung, Tests of ignoring and eliminating in nonsymmetric correspondence analysis, Adv. Data Anal. Classif., 3 (2009), 315–340. [Crossref] | Zbl 1306.62136
[39] Y. Takane, T. Shibayama, Principal component analysis with external information on both subjects and variables, Psyhometrika, 56 (1991), 97–120. [Crossref] | Zbl 0725.62055
[40] Y. Takane, H. Yanai, On oblique projectors, Linear Algebra Appl., 289 (1999), 297–310. | Zbl 0930.15003
[41] Y. Takane, H. Yanai, On the Wedderburn-Guttman theorem, Linear Algebra Appl. 410 (2005), 267–278. | Zbl 1111.15001
[42] Y. Takane, H. Yanai, On ridge operators, Linear Algebra Appl., 428 (2008), 1778–1790. | Zbl 1132.62052
[43] Y. Takane, L. Zhou, On two expressions of the MLE for a special case of the extended growth curve models, Linear Algebra Appl., 436 (2012), 2567–2577. | Zbl 1236.15002
[44] Y. Takane, L. Zhou, Anatomy of Pearson’s chi-square statistic in three-way contingency tables, In: R. E. Millsap, L. A. van der Ark, D. M. Bolt, C. M. Woods (Eds.), New Developments in Quantitative Psychology (Springer, New York, 2013), 41–57.
[45] Y. Takane, H. Hwang, H. Abdi, Regularized multiple-set canonical correlation analysis, Psychometrika, 73 (2008), 753–775. [Crossref] | Zbl 1284.62750
[46] Y. Takane, K. Jung, H. Hwang, Regularized growth curve models, Comput. Stat. Data An., 55 (2011), 1041–1052. [Crossref] | Zbl 1284.62448
[47] Y. Takane, H. A. L. Kiers, J. de Leeuw, Component analysiswith different constraints on different dimensions, Psychometrika, 60 (1995), 259–280. [Crossref]
[48] Y. Takane, H. Yanai, H. Hwang, An improved method for generalized constrained canonical correlation analysis, Comp. Stat. Data An., 50 (2006), 221–241. | Zbl 05381567
[49] Y. Takane, H. Yanai, S. Mayekawa, Relationships among several methods of linearly constrained correspondence analysis, Psychometrika, 56 (1991), 667–684. [Crossref] | Zbl 0760.62057
[50] K. Takeuchi, H. Yanai, B. N.Mukherjee, The Foundation ofMultivariate Analysis (Wiley Eastern, New Delhi, and Halsted Press, New York, 1982).
[51] C. J. F. ter Braak, Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis, Ecology, 67 (1986), 1167–1179.
[52] Y. Tian, The Moore-Penrose inverses of m× n blockmatrices and their applications, Linear Algebra Appl., 283 (1998), 35–60. | Zbl 0932.15004
[53] Y. Tian, Upper and lower bounds for ranks ofmatrix expressions using generalized inverses, Linear Algebra Appl., 355 (2002), 187–214. | Zbl 1016.15003
[54] Y. Tian, G. P. H. Styan,Onsomematrix equalities for generalized inverseswith applications, Linear Algebra Appl., 430 (2009), 2716–2733. | Zbl 1165.15006
[55] A. P. Verbyla, A conditional derivation of residual maximum likelihood, Aust. J. Stat., 32 (1990), 227–230. [Crossref]
[56] J. H. M. Wedderburn, Lectures on Matrices, Colloquium Publication, Vol. 17 (American Mathematical Society, Providence, 1934).
[57] H. Yanai, Factor analysis with external criteria, Jpn. Psychol. Res., 12 (1970), 143–153.
[58] H. Yanai, Some generalized forms of least squares g-inverse, minimumnorm g-inverse and Moore-Penrose inversematrices, Comput. Stat. Data An., 10 (1990), 251–260. [Crossref] | Zbl 0825.62550
[59] H. Yanai, Y. Takane, Canonical correlation analysis with linear constraints, Linear Algebra Appl., 176 (1992), 75–82.
[60] H. Yanai, K. Takeuchi, Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition (Springer, New York, 2011). | Zbl 1279.15003