In this paper,we state and prove an analog of Lie product formula in the setting of Euclidean Jordan algebras.
@article{bwmeta1.element.doi-10_1515_spma-2016-0025, author = {Jiyuan Tao}, title = {A Lie product type formula in Euclidean Jordan algebras}, journal = {Special Matrices}, volume = {4}, year = {2016}, pages = {255-261}, zbl = {1348.17019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0025} }
Jiyuan Tao. A Lie product type formula in Euclidean Jordan algebras. Special Matrices, Tome 4 (2016) pp. 255-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0025/
[1] R. Bhatia, Matrix Analysis, Springer Graduate Texts in Mathematics, Springer-Verlag, New York, 1997. | Zbl 0863.15001
[2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.
[3] M.S. Gowda, Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras, Technical Report, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, 2016.
[4] Gerd Herzog, A proof of Lie’s product formula, The American Mathematical Monthly, Vol. 121, No.3, 254-257, 2014. [WoS]
[5] S. Lie and F. Engel, Theorie der transformationsgruppen, 3 vols. Teubner, Leipzig, 1888.
[6] B.K. Rangarajan, Polynomial convergence of infeasible-interior-point methods over symmetric cones, SIAM J. Optim., 16, 1211-1229, 2006. | Zbl 1131.90043
[7] J.F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Alg. Appl., 312, 135-154, 2000. | Zbl 0973.90093
[8] J. Tao, L. Kong, Z. Luo, and N. Xiu, Somemajorization inequalities in Euclidean Jordan algebras, Linear Alg. Appl., 461, 92-122 (2014). | Zbl 1352.17032
[9] X. Zhan, Matrix Inequalities, Springer, 2002.
[10] F. Zhang, Quaternions and matrices of quaternions, Linear Alg. Appl. 251, 21-27 (1997). | Zbl 0873.15008