Ranks of permutative matrices
Xiaonan Hu ; Charles R. Johnson ; Caroline E. Davis ; Yimeng Zhang
Special Matrices, Tome 4 (2016), p. 233-246 / Harvested from The Polish Digital Mathematics Library

A new type of matrix, termed permutative, is defined and motivated herein. The focus is upon identifying circumstances under which square permutative matrices are rank deficient. Two distinct ways, along with variants upon them are given. These are a special kind of grouping of rows and a type of partition in which the blocks are again permutative. Other, results are given, along with some questions and conjectures.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:281321
@article{bwmeta1.element.doi-10_1515_spma-2016-0022,
     author = {Xiaonan Hu and Charles R. Johnson and Caroline E. Davis and Yimeng Zhang},
     title = {Ranks of permutative matrices},
     journal = {Special Matrices},
     volume = {4},
     year = {2016},
     pages = {233-246},
     zbl = {1338.05030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0022}
}
Xiaonan Hu; Charles R. Johnson; Caroline E. Davis; Yimeng Zhang. Ranks of permutative matrices. Special Matrices, Tome 4 (2016) pp. 233-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0022/

[1] http//oeis.orgwikiUser:Alexander_Adam#The_rank_of_the_modular_multiplication_table

[2] J, Dénes and A. D. Keedwell. Latin squares and their applications. New York-London: Academic Press. p. 547. ISBN 0-12- 209350-X. MR 351850, 1974.

[3] S. Furtado and C. R. Johnson. On the similarity classes among products of m nonsingular matrices in various orders. Linear Algebra Appl., v. 450, p. 217-242, 2014. [WoS] | Zbl 1302.15015

[4] C. F. Laywine and G. L. Mullen. Discrete mathematics using Latin squares. Wiley-Interscience Series in Discrete Mathematics and Optimization. New York: John Wiley & Sons, Inc., pp. xviii+305. ISBN 0-471-24064-8. MR 1644242, 1998. | Zbl 0957.05002

[5] P. Paparella. Realizing Suleimanova-type Spectra via Permutative Matrices, Electron. J. Linear Algebra, 31, 306-312, 2016. [WoS] | Zbl 1341.15008

[6] H. R. Sule˘imanova. Stochasticmatrices with real characteristic numbers. Doklady Akad. Nauk SSSR (N.S.), 66:343-345, 1949.