We disprove a conjecture made by Rajesh Pereira and Joanna Boneng regarding the upper bound on the number of doubly quasi-stochastic scalings of an n × n positive definite matrix. In doing so, we arrive at the true upper bound for 3 × 3 real matrices, and demonstrate that there is no such bound when n ≥ 4.
@article{bwmeta1.element.doi-10_1515_spma-2016-0014, author = {George Hutchinson}, title = {On the cardinality of complex matrix scalings}, journal = {Special Matrices}, volume = {4}, year = {2016}, pages = {141-150}, zbl = {1333.15028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0014} }
George Hutchinson. On the cardinality of complex matrix scalings. Special Matrices, Tome 4 (2016) pp. 141-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0014/
[1] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statistics, 35(2):876–879, 1964. [Crossref] | Zbl 0134.25302
[2] A.W. Marshall and I. Olkin. Scaling of matrices to achieve specified row and column sums. Numer. Math., 12(1):83–90, 1968. [Crossref] | Zbl 0165.17401
[3] M. V. Menon. Reduction of amatrix with positive elements to a doubly stochasticmatrix. Proc. Amer.Math. Soc., 18:244–247, 1967. [Crossref] | Zbl 0153.05301
[4] R. Brualdi, S. Parter, and H. Schneider. The diagonal equivalence of a non-negative matrix to a stochastic matrix. J. Math. Anal. Appl., 16:31–50, 1966. [Crossref] | Zbl 0231.15017
[5] C. R. Johnson and R. Reams. Scaling of symmetric matrices by positive diagonal congruence. Linear Multilinear Algebra, 57:123–140, 2009. [Crossref] | Zbl 1166.15011
[6] R. Pereira and J. Boneng. The theory and applications of complex matrix scalings, Spec. Matrices, 2: 68-77, 2014 | Zbl 1291.15080
[7] P. J. Davis. Circulant Matrices. John Wiley & Sons, 1979. | Zbl 0418.15017
[8] D. P. O’Leary. Scaling symmetric positive definite matrices to prescribed row sums. Linear Algebra Appl., pages 185–191, 2003. | Zbl 1038.65040