Let G be a finite group of order n. The strong power graph Ps(G) of G is the undirected graph whose vertices are the elements of G such that two distinct vertices a and b are adjacent if am1=bm2 for some positive integers m1, m2 < n. In this article we classify all groups G for which Ps(G) is a line graph. Spectrum and permanent of the Laplacian matrix of the strong power graph Ps(G) are found for any finite group G.
@article{bwmeta1.element.doi-10_1515_spma-2016-0012, author = {A. K. Bhuniya and Sudip Bera}, title = {On some characterizations of strong power graphs of finite groups}, journal = {Special Matrices}, volume = {4}, year = {2016}, pages = {121-129}, zbl = {1331.05136}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0012} }
A. K. Bhuniya; Sudip Bera. On some characterizations of strong power graphs of finite groups. Special Matrices, Tome 4 (2016) pp. 121-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0012/
[1] J. Abawajy, A. V. Kelarev and M. Chowdhury, Power graphs: A survey, Electron. J. Graph Theory Appl, 1(2013), 125-147. | Zbl 1306.05090
[2] R. B. Bapat, Graphs and matrices, Second edition, Hindustan Book Agency, 2014. | Zbl 1301.05001
[3] A. R. Brualdi and D. Cvetkovic, A Combinatorial approch to matrix theory and its application, CRC Press, 2009. | Zbl 1155.15003
[4] P. J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math, 31(2011), 1220-1222. | Zbl 1276.05059
[5] P. J. Cameron, The power graph of a finite group - II, J.Group Theory, 13(6)(2010), 779-783. [WoS] | Zbl 1206.20023
[6] I. Chakrabarty, S. Ghosh and M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum , 78(2009), 410-426. [WoS] | Zbl 1207.05075
[7] S. Chattopadhyay and P. Panigrahi, On Laplacian spectrum of power graphs of finite cyclic and dihedral groups, Linear and multilinear Algbra, 7(63)(2014), 1345-1355. | Zbl 1308.05070
[8] M. Fielder, Algebraic connectivity of graphs, Czechoslovak Math. J, 23(1973), 298-305. [WoS] | Zbl 0265.05119
[9] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York Inc, 2001. | Zbl 0968.05002
[10] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl, 414(2006), 29-37. [Crossref] | Zbl 1092.05045
[11] I. Gutman, B. Zhou and B. Furtula, The Laplacian energy like invarient is an energy like invarient, MATCH Commun. Math. Comput. Chem., 64(2010), 85-96. | Zbl 1265.05370
[12] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem, 29(2001), 163-168. [Crossref] | Zbl 0977.05085
[13] Y. Hou, Z. Teng and C. W. Woo, On the spectral radius, k degree and the upper bound of energy in a graph, MATCH Commun. Math. Comput. Chem., 57(2007), 341-350. | Zbl 1150.05025
[14] T. W. Hungerford, Algebra, Graduate Text in Mathematics 73, Springer-Verlag, New York(NY), (1974).
[15] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contributions to General Algebra, 12(Heyn, Klagenfurt, 2000), 229-235. | Zbl 0966.05040
[16] X. Ma, On the spectra of strong power graphs of finite groups, Preprint arXiv:1506.07817 [math.GR]2015.
[17] H. Minc, Permanents, Addition-Wesley, Reading, Mass, 1978.
[18] H. Minc, Theory of permanents, Linear and Multilinear Algebra, 12(1983), 227-263. | Zbl 0511.15002
[19] B. Mohar, The Laplacian spectrumof graphs, In: Y. Alavi, G. Chartrand, Oellermann OR, A. J. Schwenk, editors. Graph Theory, combinatorics, and aplications, Wiley, New York, 2(1991), 871-898. | Zbl 0840.05059
[20] G. Singh and K. Manilal, Some generalities on power graphs and strong power graphs, Int. J. Contemp. Math Sciences, 5(55)(2010), 2723-2730. | Zbl 1231.05126
[21] D. B. West, Introduction to Graph theory, 2nd ed., Pearson education, 2001.