We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.
@article{bwmeta1.element.doi-10_1515_spma-2016-0009, author = {Ajda Fo\v sner and Bojan Kuzma}, title = {Preserving zeros of Lie product on alternate matrices}, journal = {Special Matrices}, volume = {4}, year = {2016}, pages = {80-100}, zbl = {1338.15055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0009} }
Ajda Fošner; Bojan Kuzma. Preserving zeros of Lie product on alternate matrices. Special Matrices, Tome 4 (2016) pp. 80-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0009/
[1] R. Bhatia, P. Rosenthal, How and why to solve the operator equation AX − XB = Y, Bull. London Math. Soc. 29 (1997), 1–21.
[2] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546. | Zbl 0791.16028
[3] M. Brešar, C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695–708. | Zbl 0794.46045
[4] J.-T. Chan, C.-K. Li, N.-S. Sze, Mappings on matrices: invariance of functional values of matrix products, J. Aust. Math. Soc. 81 (2006), 165–184. | Zbl 1110.15005
[5] M. D. Choi, A. Jafarian, H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227–241. [WoS] | Zbl 0615.15004
[6] J. Cui, J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), 1649–1663. [WoS] | Zbl 1146.47023
[7] C.-A. Faure, An elementary proof of the fundamental theorem of projective geometry, Geom. Dedicata 90 (2002), 145–151. | Zbl 0996.51001
[8] P.A. Fillmore, D.A. Herrero, W.E. Longstaff, The hyperinvariant subspace lattice of a linear transformation, Linear Algebra Appl. 17 (1977), 125–132. | Zbl 0359.47005
[9] A. Fošner, B. Kuzma, T. Kuzma, N.-S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear Multilinear Algebra 59 (2011), 507–529. [WoS] | Zbl 1222.15031
[10] W. Fulton, Algebraic topology: a first course, Springer, Graduate Texts in Mathematics 153, New York (1995). | Zbl 0852.55001
[11] F. R. Gantmacher, Applications of the theory of matrices, Interscience Publishers, Inc., New York (1959). | Zbl 0085.01001
[12] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge (1985). | Zbl 0576.15001
[13] C.-K. Li, S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), 591–605. | Zbl 0991.15001
[14] C.-K. Li, N.-K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162- 164 (1992), 217–235.
[15] G. Lumer, M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. | Zbl 0133.07903
[16] L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Springer, Lecture Notes in Mathematics 1895, Berlin (2007).
[17] L. Molnár, P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, Q. J. Math. 56 (2005), 589–595.
[18] M. Omladič, H. Radjavi, P. Šemrl, Preserving commutativity, J. Pure Appl. Algebra 156 (2001), 309–328.
[19] T. Petek, Additive mappings preserving commutativity, Linear Multilinear Algebra 42 (1997), 205–211. [Crossref][WoS] | Zbl 0895.15005
[20] T. Petek, Mappings preserving spectrum and commutativity on Hermitian matrices, Linear Algebra Appl. 290 (1999), 167– 191. | Zbl 0930.15027
[21] T. Petek, A note on additive commutativity-preserving mappings, Publ. Math. (Debr.) 56 (2000), 53–61. | Zbl 0954.15010
[22] T. Petek, H. Sarria, Spectrum and commutativity preserving mappings on H2, Linear Algebra Appl. 364 (2003), 317–319. | Zbl 1026.15017
[23] T. Petek, P. Šemrl, Adjacency preserving maps on matrices and operators, Proc. R. Soc. Edinb. 132 (2002), 661–684. | Zbl 1006.15015
[24] S. Pierce et.al., A survey of linear preserver problems, Linear Multilinear Algebra 33 (1992), 1–192.
[25] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781–819. | Zbl 1111.15002
[26] P. Šemrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), 1051–1070. [WoS] | Zbl 1195.15027
[27] W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29–35. | Zbl 0329.15005