A copositive matrix A is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A−1, especially on the diagonal entries, we can guarantee that a copositive matrix A is exceptional. We also show that the only 5-by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation similarity).
@article{bwmeta1.element.doi-10_1515_spma-2016-0007, author = {Charles R. Johnson and Robert B. Reams}, title = {Sufficient conditions to be exceptional}, journal = {Special Matrices}, volume = {4}, year = {2016}, pages = {67-72}, zbl = {1338.15025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0007} }
Charles R. Johnson; Robert B. Reams. Sufficient conditions to be exceptional. Special Matrices, Tome 4 (2016) pp. 67-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0007/
[1] L. D. Baumert, Extreme copositive quadratic forms, Ph.D. Thesis, California Institute of Technology, Pasadena, California, 1965. | Zbl 0145.25501
[2] L. D. Baumert, Extreme copositive quadratic forms, Pacific Journal of Mathematics19(2) (1966) 197-204.[Crossref] | Zbl 0145.25501
[3] L. D. Baumert, Extreme copositive quadratic forms II, Pacific Journal of Mathematics20(1) (1967) 1-20.[Crossref] | Zbl 0189.32904
[4] Z. B. Charles, M. Farber, C. R. Johnson, L. Kennedy-Shaffer, Nonpositive eigenvalues of hollow, symmetric, nonnegative matrices, SIAM Journal of Matrix Anal. Appl.34(3) (2013) 1384-1400.[Crossref][WoS] | Zbl 1282.15016
[5] P. J. C. Dickinson, M. Dür, L. Gijben, R. Hildebrand, Irreducible elements of the copositive cone, Linear Algebra and its Applications439 (2013) 1605-1626.[WoS] | Zbl 1305.15074
[6] R. DeMarr, Nonnegative matrices with nonnegative inverses, Proceedings of the American Mathematical Society35(1) (1972) 307–308.[WoS] | Zbl 0257.15002
[7] P. H. Diananda, On non-negative forms in real variables some or all of which are non-negative, Proc. Cambridge Philosoph. Soc.58 (1962), 17–25. | Zbl 0108.04803
[8] M. Hall, Combinatorial theory, Blaisdell/Ginn, 1967.
[9] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985. | Zbl 0576.15001
[10] M. Hall and M. Newman, Copositive and completely positive quadratic forms, Proc. Camb. Phil. Soc.59 (1963) 329–339.[Crossref] | Zbl 0124.25302
[11] A. J. Hoffman and F. Pereira, On copositive matrices with −1, 0, 1 entries, Journal of Combinatorial Theory (A)14 (1973) 302–309. | Zbl 0273.15019
[12] C. R. Johnson and R. Reams, Constructing copositive matrices from interior matrices, Electronic Journal of Linear Algebra17 (2008) 9–20. | Zbl 1143.15023
[13] C. R. Johnson and R. Reams, Spectral theory of copositive matrices, Linear Algebra and its Applications395 (2005) 275–281. | Zbl 1064.15007
[14] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.
[15] H. Väliaho, Criteria for copositive matrices, Linear Algebra and its Applications81 (1986) 19–34.[Crossref]