Nonlinear maps preserving Lie products on triangular algebras
Weiyan Yu
Special Matrices, Tome 4 (2016), p. 56-66 / Harvested from The Polish Digital Mathematics Library

In this paper we prove that every bijection preserving Lie products from a triangular algebra onto a normal triangular algebra is additive modulo centre. As an application, we described the form of bijections preserving Lie products on nest algebras and block upper triangular matrix algebras.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276901
@article{bwmeta1.element.doi-10_1515_spma-2016-0006,
     author = {Weiyan Yu},
     title = {Nonlinear maps preserving Lie products on triangular algebras},
     journal = {Special Matrices},
     volume = {4},
     year = {2016},
     pages = {56-66},
     zbl = {1331.47088},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0006}
}
Weiyan Yu. Nonlinear maps preserving Lie products on triangular algebras. Special Matrices, Tome 4 (2016) pp. 56-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0006/

[1] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993) 525-546. | Zbl 0791.16028

[2] D. Benkovič, D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra, 280 (2004) 797-824.[WoS] | Zbl 1076.16032

[3] D. Benkovič, Biderivations triangular algebras, Linear Algebra Appl. 431 (2009) 1587-1602. | Zbl 1185.16045

[4] M. Brešar, P. Šemrl, Commutativity preserving linear maps on central simple algebras, J. Algebras, 284 (2005) 102-110.

[5] M. Choi, A. Jafarian, H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987) 227-241. | Zbl 0615.15004

[6] W.S. Cheung, Commuting maps of triangular algebras, J. London math. Soc. 63 (2001) 117-127. | Zbl 1014.16035

[7] W.S. Cheung, Lie derivation of triangular algebras, Linear Multilinear Algebra, 51 (2003) 299-310. | Zbl 1060.16033

[8] K.R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1988. | Zbl 0669.47024

[9] J.C. Hou, M.Y. Jiao, Additive maps preserving Jordan zero-products on nest algebras, Linear Algebra Appl. 429 (2008) 190-208.[WoS] | Zbl 1140.47028

[10] F.Y. Lu, Additive Jordan isomorphisms of nest algebras on normed spaces, J. Math. Anal. Appl. 284 (2003) 127-143. | Zbl 1032.46064

[11] L.W. Marcoux, Lie isomorphisms of nest algebras, J. Funct. Anal. Appl. 164 (1999) 163-180.[WoS] | Zbl 0940.47061

[12] W.S. Martindale, Lie isomorphisms of simple rings, J. London Math. Soc. 44 (1969) 213-221. | Zbl 0164.03901

[13] C.R. Miers, Commutativity preserving maps of factors, Canad. J. Math. 40 (1988) 248-256. | Zbl 0632.46055

[14] C.R. Miers, Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971) 717-735. | Zbl 0204.14803

[15] C.R. Miers, Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970) 55-63. | Zbl 0191.42901

[16] L. Molnár, P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, Q. J. Math. 56 (2005) 589-595.

[17] M. Omladič, H. Radjavi, P. Šemrl, Preserving commutativity, J. Pure Appl. Algebra 156 (2001) 309-328.

[18] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005) 781-819. | Zbl 1111.15002

[19] T.L. Wong, Jordan isomorphisms of triangular algebras, Linear Algebra Appl. 418 (2006) 225-233.

[20] J.H. Zhang, W.Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006) 251-255. | Zbl 1103.47026

[21] W.Y. YU, J.H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010) 2953-2960. | Zbl 1193.16030

[22] W.Y. YU, J.H. Zhang, Lie triple derivations of CSL algebras, Int Theor Phys. 52 (2013) 2118-2127. | Zbl 1270.81015

[23] J.H. Zhang, F.J. zhang, Nonlinear maps preserving lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008) 18-30.[WoS] | Zbl 1178.47024

[24] W.Y. YU, J.H. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979-1991.[WoS] | Zbl 1263.46058