Pentadiagonal Companion Matrices
Brydon Eastman ; Kevin N. Vander Meulen
Special Matrices, Tome 4 (2016), p. 13-30 / Harvested from The Polish Digital Mathematics Library

The class of sparse companion matrices was recently characterized in terms of unit Hessenberg matrices. We determine which sparse companion matrices have the lowest bandwidth, that is, we characterize which sparse companion matrices are permutationally similar to a pentadiagonal matrix and describe how to find the permutation involved. In the process, we determine which of the Fiedler companion matrices are permutationally similar to a pentadiagonal matrix. We also describe how to find a Fiedler factorization, up to transpose, given only its corner entries.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276929
@article{bwmeta1.element.doi-10_1515_spma-2016-0003,
     author = {Brydon Eastman and Kevin N. Vander Meulen},
     title = {Pentadiagonal Companion Matrices},
     journal = {Special Matrices},
     volume = {4},
     year = {2016},
     pages = {13-30},
     zbl = {1338.15074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0003}
}
Brydon Eastman; Kevin N. Vander Meulen. Pentadiagonal Companion Matrices. Special Matrices, Tome 4 (2016) pp. 13-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0003/

[1] J.L. Aurentz, R. Vandebril, and D.S. Watkins, Fast computation of the zeros of a polynomial via factorization of the companion matrix, SIAM J. Sci. Comput.35 (2013) A255 – A269.[WoS] | Zbl 1264.65074

[2] J.L. Aurentz, R. Vandebril, and D.S. Watkins, Fast computation of eigenvalues of companion, comrade, and related matrices, BIT Numer. Math.54 (2014) 7–30. | Zbl 1293.65052

[3] T. Bella, V. Olshevsky, and P. Zhlobich, A quasiseparable approach to five-diagonal CMV and Fiedler matrices, Linear Algebra Appl.434(4) (2011) 957–976.[WoS] | Zbl 1215.15014

[4] B. Bevilacqua, G.M. Del Corso, and L. Gemignani, A CMV–based eigensolver for companion matrices, SIAM J. Matrix Anal. Appl.36(3) (2015) 1046–1068.[WoS][Crossref] | Zbl 1321.65076

[5] D.A. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg, A fast implicit QR eigenvalue algorithm for companion matrices, Linear Algebra Appl.432(8) (2010) 2006–2031.[WoS] | Zbl 1188.65039

[6] D.A. Bini, F. Daddi, and L. Gemignani, On the shifted QR iteration applied to companion matrices, Electron. Trans. Numer. Anal.18 (2004) 137–152. | Zbl 1066.65039

[7] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for companion matrices, Oper. Theory Adv. Appl.179 (2008) 111–143. | Zbl 1136.65041

[8] F. De Terán, F. Dopico, and D.S. Mackey, Fiedler companion linearizations and the recovery of minimal indices, SIAM J. Matrix Anal. Appl., 31:4 (2010) 2181–2204.[WoS][Crossref] | Zbl 1205.15024

[9] F. De Terán, F. Dopico, and J. Pérez, Condition numbers for inversion of Fiedler companion matrices, Linear Algebra Appl.439 (2013) 944–981.[WoS] | Zbl 1281.15004

[10] B. Eastman, I.-J. Kim, B. Shader, and K.N. Vander Meulen, Companion matrix patterns, Linear Algebra Appl.463 (2014) 255–272.[WoS] | Zbl 1310.15015

[11] M. Fiedler, A note on companion matrices, Linear Algebra Appl.372 (2003) 325–331. | Zbl 1031.15014

[12] C. Garnett, B. Shader, C. Shader, and P. van den Driessche, Characterization of a family of generalized companion matrices Linear Algebra Appl. (2015), in press, .[Crossref] | Zbl 06570135

[13] N.J. Higham, D.S. Mackey, N. Mackey, and F. Tisseur, Symmetric linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl.29 (2006) 143–159.[WoS] | Zbl 1137.15006

[14] C. Ma and X. Zhan, Extremal sparsity of the companion matrix of a polynomial, Linear Algebra Appl.438 (2013) 621–625.[WoS] | Zbl 1269.15007

[15] S. Vologiannidis and E.N. Antoniou, A permuted factors approach for the linearization of polynomial matrices, Math. Control Signals Systems22 (2011) 317–342.[WoS] | Zbl 1248.93045