On the determinants of some kinds of circulant-type matrices with generalized number sequences
Emrullah Kirklar ; Fatih Yilmaz
Special Matrices, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Recently, determinant computation of circulant type matrices with well-known number sequences has been studied, extensively. This study provides the determinants of the RFMLR, RLMFL, RFPrLrR and RLPrFrL circulant matrices with generalized number sequences of second order.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275904
@article{bwmeta1.element.doi-10_1515_spma-2015-0023,
     author = {Emrullah Kirklar and Fatih Yilmaz},
     title = {On the determinants of some kinds of circulant-type matrices with generalized number sequences},
     journal = {Special Matrices},
     volume = {3},
     year = {2015},
     zbl = {1329.15059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0023}
}
Emrullah Kirklar; Fatih Yilmaz. On the determinants of some kinds of circulant-type matrices with generalized number sequences. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0023/

[1] S.-Q. Shen, J.M. Cen, Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput. 217 (2011), no.23, 9790-9797. | Zbl 1222.15010

[2] D. Bozkurt, T.Y. Tam, Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers, Appl. Math. Comput. 219 (2012), no.2, 544-551. | Zbl 1302.15005

[3] D. Bozkurt, On the determinants and inverses of circulantmatriceswith a general number sequence, arXiv:1202.1068, 2012.

[4] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3.3 (1965): 161-176. | Zbl 0131.04103

[5] N. Shen, Z. Jiang, J. Li, On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers, WSEAS Trans. Math., 2013:42-53.

[6] Z. Jiang, N. Shen, J. Li, Determinants of the RFMLR circulantmatriceswith Perrin, Padovan, Tribonacci, and generalized Lucas numbers, J. Appl. Math., 2014, Article ID 585438, pp. 1-11.

[7] Z. P. Tian, Fast algorithms for solving the inverse problem of AX = b in four different families of patternedmatrices, Far East J. Appl. Math.52, 2011, pp. 1–12. | Zbl 1220.65054

[8] D. Chillag, Regular representations of semisimple algebras, separable field extensions, group characters, generalized circulants, and generalized cyclic codes, Linear Algebra Appl.218, 1995, pp. 147–183. | Zbl 0839.20015

[9] P.J. Davis, Circulant Matrices, Wiley, NewYork, 1979. | Zbl 0418.15017

[10] Z. L. Jiang and Z. X. Zhou, Circulant Matrices, Chengdu Technology University Publishing Company, Chengdu, 1999.

[11] T. Xu, Z. Jiang, Z Jiang, Explicit determinants of the RFPrLrR circulant and RLPrFrL circulant matrices involving some famous numbers, Abstr. Appl. Anal., 2014, Article ID 647030, 9 p.

[12] Y. Gao, Z. Jiang, Y. Gong, On determinants and inverses of skew circulant and skew circulant matrices with Fibonacci and Lucas numbers, WSEAS Trans. Math., 2013, 12, 472-481.

[13] X. Jiang, K. Hong, Exact determinants of some special circulant matrices involving four kinds of famous numbers, Abstr. Appl. Anal., 2014, Article ID 273680, 12 p.

[14] Z. Jiang, J. Li, N. Shen, On the explicit determinants and singularities of r-circulant and left r-circulant matrices with some famous numbers, WSEAS Trans. Math.,2013, 12, 341-351.