Companion matrices and their relations to Toeplitz and Hankel matrices
Yousong Luo ; Robin Hill
Special Matrices, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we describe some properties of companion matrices and demonstrate some special patterns that arisewhen a Toeplitz or a Hankel matrix is multiplied by a related companion matrix.We present a necessary and sufficient condition, generalizing known results, for a matrix to be the transforming matrix for a similarity between a pair of companion matrices. A special case of our main result shows that a Toeplitz or a Hankel matrix can be extended using associated companion matrices, preserving the Toeplitz or Hankel structure respectively.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275832
@article{bwmeta1.element.doi-10_1515_spma-2015-0021,
     author = {Yousong Luo and Robin Hill},
     title = {Companion matrices and their relations to Toeplitz and Hankel matrices},
     journal = {Special Matrices},
     volume = {3},
     year = {2015},
     zbl = {1327.15024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0021}
}
Yousong Luo; Robin Hill. Companion matrices and their relations to Toeplitz and Hankel matrices. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0021/

[1] Yu. A. Al’pin and S. N. Il’in, Infinite extensions of Toeplitz matrices, J. Math. Sci. (N. Y.), Vol. 127, No. 3, 1957 - 1961, (2005).

[2] D. Bini, V. Pan, Eflcient algorithms for the evaluation of the eigenvalues of (block) banded Toeplitz matrices, Math. Comp. 50, 431-448, (1988). | Zbl 0646.65035

[3] Louis Brand, Companion matrix and its properties, Amer. Math. Monthly, Vol. 71, No. 6, 629 - 634, (1964).

[4] Z. Cinkir, A fast elementary algorithm for computing the determinant of Toeplitz matrices, J. Comput. Appl. Math, Vol. 255, 353-361, (2014). | Zbl 1291.65142

[5] I. Gohberg and A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogs, Mat. Issled. 7 (2), 201-223 (1972). | Zbl 0288.15004

[6] Georg Heinig and Karla Rost, Introduction to Bezoutians, Operator Theory: Advances and Applications, Vol. 199, 25 - 118, (2010). | Zbl 1203.15020

[7] Georg Heinig and Karla Rost, Algebraic methods for Toeplitz-like matrices and operators, Operator Theory: Advances and Applications, Vol. 13, Birkhäuser Verlag, Basel, (1984).

[8] R. Hill, Y. Luo and U. Schwerdtfeger, Exact solutions to a two-block l1 optimal control problem, Porceedings of the 7th IFAC Symposium on Robust Control Design, ROCOND’12, Jakob Stoustrup, Elsevier, United Kingdom, pp. 461-466 ( 2012)

[9] Thomas Kailath, Linear System, Prentice-Hall, Inc., (1980).

[10] F. I. Lander, The Bezoutian and the inversion of Hankel and Toeplitz matrices (in Russian),Mat. Issled., Vol. 9, 69–87, (1974). | Zbl 0331.15017

[11] Arthur Lim and Jialing Dai On product of companion matrices, Linear Algebra Appl., Vol. 435, Issue 11, 2921–2935, (2011). [WoS] | Zbl 1222.39002

[12] David G. Luenberger, Introduction to Dynamic Systems: Theory,Models, and Applications, JohnWiley&Sons, Inc., New York, (1979). | Zbl 0458.93001