In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]
@article{bwmeta1.element.doi-10_1515_spma-2015-0020, author = {Thomas Ernst}, title = {Factorizations for q-Pascal matrices of two variables}, journal = {Special Matrices}, volume = {3}, year = {2015}, zbl = {1329.15074}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0020} }
Thomas Ernst. Factorizations for q-Pascal matrices of two variables. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0020/
[1] W. A. Al-Salam, q-Bernoulli numbers and polynomials, Math. Nachr 17 (1959), 239–260. [Crossref]
[2] R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13–23. | Zbl 0755.15012
[3] T. Ernst, q-Leibniz functional matrices with applications to q-Pascal and q-Stirling matrices, Adv. Stud. Contemp. Math., Kyungshang 22 (2012), 537-555. | Zbl 1279.15013
[4] T. Ernst, q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials, J. Discrete Math., (2013), Article ID 450481, 10 p. | Zbl 1295.05060
[5] T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser 2012. | Zbl 1256.33001
[6] T. Ernst, An umbral approach to find q-analogues of matrix formulas, Linear Algebra Appl. 439 (2013), 1167–1182. [WoS] | Zbl 1305.15039
[7] T. Ernst, Faktorisierungen von q-Pascalmatrizen (Factorizations of q-Pascal matrices), Algebras Groups Geom. 31 (2014), no. 4, 387-405 | Zbl 1317.15012
[8] H. Exton, q-Hypergeometric functions and applications, Ellis Horwood 1983.
[9] F.H. Jackson, A basic-sine and cosine with symbolical solution of certain differential equations, Proc. EdinburghMath. Soc. 22 (1904), 28–39. | Zbl 35.0445.01
[10] P. Nalli, On a calculation procedure similar to integration, (Sopra un procedimento di calcolo analogo all integrazione) (Italian), Palermo Rend 47 (1923), 337–374. | Zbl 49.0196.02
[11] M. Ward, A calculus of sequences, Amer. J. Math. 58 (1936), 255–266. | Zbl 62.0408.03
[12] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51–60. | Zbl 0873.15014
[13] Z. Zhang and M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), 169–177. | Zbl 0892.15018