We consider a k-tridiagonal ℓ-Toeplitz matrix as one of generalizations of a tridiagonal Toeplitz matrix. In the present paper, we provide a decomposition of the matrix under a certain condition. By the decomposition, the matrix is easily analyzed since one only needs to analyze the small matrix obtained from the decomposition. Using the decomposition, eigenpairs and arbitrary integer powers of the matrix are easily shown as applications.
@article{bwmeta1.element.doi-10_1515_spma-2015-0019, author = {A. Ohashi and T. Sogabe and T.S. Usuda}, title = {On decomposition of k-tridiagonal l-Toeplitz matrices and its applications}, journal = {Special Matrices}, volume = {3}, year = {2015}, zbl = {1327.15018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0019} }
A. Ohashi; T. Sogabe; T.S. Usuda. On decomposition of k-tridiagonal ℓ-Toeplitz matrices and its applications. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0019/
[1] R. Á lvarez-Nodarse, J. Petronilho, N.R. Quintero, On some tridiagonal k-Toeplitzmatrices: algebraic and analytical aspects. Applications, J. Comput. Appl. Math., 184, 2 (2005), 518-537. | Zbl 1078.15008
[2] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia (1997).
[3] M.E.A. El-Mikkawy, A generalized symbolic Thomas algorithm, Appl. Math., 3, 4 (2012), 342-345. [Crossref]
[4] M.E.A. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput., 215, 12 (2010), 4456-4461. | Zbl 1193.11012
[5] C.F. Fischer, R.A. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM, J. Numer. Anal., 6, 1 (1969), 127-142. [Crossref] | Zbl 0176.46802
[6] C.M. da Fonseca, J. Petronilho, Explicit inverse of a tridiagonal k-Toeplitz matrix, Numer. Math., 100, 3 (2005), 457-482. | Zbl 1076.15011
[7] E. Kilic, On a constant-diagonals matrix, Appl. Math. Comput., 204, 1 (2008), 184-190. [WoS] | Zbl 1159.65047
[8] E. Kırklar, F. Yılmaz, A note on k-tridiagonal k-Toeplitz matrices, Ala. J. Math., 39, (2015), 1-4. | Zbl 06577919
[9] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia (2004).
[10] A. Ohashi, T.S. Usuda, T. Sogabe, F. Yılmaz, On tensor product decomposition of k-tridiagonal Toeplitz matrices, Int. J. Pure and Appl. Math., 103, 3 (2015), 537-545. | Zbl 1327.15018
[11] T. Sogabe, M.E.A. El-Mikkawy, Fast block diagonalization of k-tridiagonal matrices, Appl. Math. Comput., 218, 6 (2011), 2740-2743. | Zbl 06043893
[12] J. Wittenburg, Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics, J. Appl. Math. Mech., 62, 4 (1998), 575-587.
[13] T. Yamamoto, Inversion formulas for tridiagonalmatrices with applications to boundary value problems, Numer. Funct. Anal. Optim., 22, 3-4 (2001), 357-385. [Crossref]