In this paperwe study the Hadamard product of inverse-positive matrices.We observe that this class of matrices is not closed under the Hadamard product, but we show that for a particular sign pattern of the inverse-positive matrices A and B, the Hadamard product A ◦ B−1 is again an inverse-positive matrix.
@article{bwmeta1.element.doi-10_1515_spma-2015-0018, author = {Gass\'o Maria T. and Torregrosa Juan R. and Abad Manuel}, title = {A Hadamard product involving inverse-positive matrices}, journal = {Special Matrices}, volume = {3}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0018} }
Gassó Maria T.; Torregrosa Juan R.; Abad Manuel. A Hadamard product involving inverse-positive matrices. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0018/
[00000] [1] S.M. Fallat, C.R. Johnson, Hadamard powers and totally positive matrices, Linear Algebra Appl., 423 (2007) 420-427.
[00001] [2] K. Fan, Inequalities for M-matrices, Nederl. Akad. Wetensch. Proc. Ser. A67 (1964) 602-610.
[00002] [3] C.R. Johnson, A Hadamard Product Involving M-matrices, Linear Multilinear Algebra, 4 (1977) 261-264. [Crossref]
[00003] [4] C.R. Johnson, R.L. Smith, Path Product matrices, Linear Multilinear Algebra, 46 (1999) 177-191.
[00004] [5] Y. Shangjun, C. Qian, On Oppenheim’s inequality, Numerical Mathematics, 14(2) (2005) 97-101.
[00005] [6] B.Y. Wang, X. Zhang, F. Zhang, On the Hadamard Product of Inverse M-matrices, Linear Algebra Appl., 305 (2000) 23-31.