Recently Prodinger [8] considered the reciprocal super Catalan matrix and gave explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and obtained some related matrices. For all results, q-analogues were also presented. In this paper, we define and study a variant of the reciprocal super Catalan matrix with two additional parameters. Explicit formulæ for its LU-decomposition, LUdecomposition of its inverse and the Cholesky decomposition are obtained. For all results, q-analogues are also presented.
@article{bwmeta1.element.doi-10_1515_spma-2015-0014, author = {Emrah K\i l\i \c c and Ilker Akkus and Gonca K\i z\i laslan}, title = {A variant of the reciprocal super Catalan matrix}, journal = {Special Matrices}, volume = {3}, year = {2015}, zbl = {1330.15034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0014} }
Emrah Kılıç; Ilker Akkus; Gonca Kızılaslan. A variant of the reciprocal super Catalan matrix. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0014/
[1] J. E. Andersen and C. Berg, Quantum Hilbert matrices and orthogonal polynomials, math.CA:arXiv:math/0703546v1. | Zbl 1183.33034
[2] M. D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90 (5) (1983), 301–312. | Zbl 0546.47007
[3] D. Hilbert, Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math. 18 (1894), 155–159. (367–370 in “Gesammelte Abhandlungen II”, Berlin 1933.) [Crossref]
[4] E. Kılıç and H. Prodinger, The q-Pilbert matrix, Inter. J. Computer Math., 89 (10) (2012), 1370–1377. | Zbl 1290.11026
[5] E. Kılıç and H. Prodinger, Variants of the Filbert matrix, The Fibonacci Quarterly 51(2) (2013), 153–162. | Zbl 1306.11019
[6] V. Y. Pan, Structured matrices and polynomials, Birkhauser Boston, Inc., Boston, MA, Springer-Verlag, New York, 2001.
[7] M. Petkovsek, H. Wilf, and D. Zeilberger, A = B, A.K. Peters, Ltd., 1996.
[8] H. Prodinger, The reciprocal super Catalan matrix, Special Matrices 3 (2015), 111–117 | Zbl 1321.15027
[9] T. M. Richardson, The Filbert matrix, The Fibonacci Quarterly 39 (3) (2001), 268–275. | Zbl 0994.11011
[10] T. M. Richardson. The reciprocal Pascal matrix, ArXiv:1405.6315, 2014.
[11] A. Riese, A Mathematica q-analogue of Zeilberger’s algorithm for proving q-hypergeometric identities, Diploma Thesis, RISC, J. Kepler University, Linz, Austria, 1995.
[12] A. Riese, http://www.risc.uni-linz.ac.at/research/combinat/software/qZeil/index.php.