A variant of the reciprocal super Catalan matrix
Emrah Kılıç ; Ilker Akkus ; Gonca Kızılaslan
Special Matrices, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Recently Prodinger [8] considered the reciprocal super Catalan matrix and gave explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and obtained some related matrices. For all results, q-analogues were also presented. In this paper, we define and study a variant of the reciprocal super Catalan matrix with two additional parameters. Explicit formulæ for its LU-decomposition, LUdecomposition of its inverse and the Cholesky decomposition are obtained. For all results, q-analogues are also presented.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271768
@article{bwmeta1.element.doi-10_1515_spma-2015-0014,
     author = {Emrah K\i l\i \c c and Ilker Akkus and Gonca K\i z\i laslan},
     title = {A variant of the reciprocal super Catalan matrix},
     journal = {Special Matrices},
     volume = {3},
     year = {2015},
     zbl = {1330.15034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0014}
}
Emrah Kılıç; Ilker Akkus; Gonca Kızılaslan. A variant of the reciprocal super Catalan matrix. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0014/

[1] J. E. Andersen and C. Berg, Quantum Hilbert matrices and orthogonal polynomials, math.CA:arXiv:math/0703546v1. | Zbl 1183.33034

[2] M. D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90 (5) (1983), 301–312. | Zbl 0546.47007

[3] D. Hilbert, Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math. 18 (1894), 155–159. (367–370 in “Gesammelte Abhandlungen II”, Berlin 1933.) [Crossref]

[4] E. Kılıç and H. Prodinger, The q-Pilbert matrix, Inter. J. Computer Math., 89 (10) (2012), 1370–1377. | Zbl 1290.11026

[5] E. Kılıç and H. Prodinger, Variants of the Filbert matrix, The Fibonacci Quarterly 51(2) (2013), 153–162. | Zbl 1306.11019

[6] V. Y. Pan, Structured matrices and polynomials, Birkhauser Boston, Inc., Boston, MA, Springer-Verlag, New York, 2001.

[7] M. Petkovsek, H. Wilf, and D. Zeilberger, A = B, A.K. Peters, Ltd., 1996.

[8] H. Prodinger, The reciprocal super Catalan matrix, Special Matrices 3 (2015), 111–117 | Zbl 1321.15027

[9] T. M. Richardson, The Filbert matrix, The Fibonacci Quarterly 39 (3) (2001), 268–275. | Zbl 0994.11011

[10] T. M. Richardson. The reciprocal Pascal matrix, ArXiv:1405.6315, 2014.

[11] A. Riese, A Mathematica q-analogue of Zeilberger’s algorithm for proving q-hypergeometric identities, Diploma Thesis, RISC, J. Kepler University, Linz, Austria, 1995.

[12] A. Riese, http://www.risc.uni-linz.ac.at/research/combinat/software/qZeil/index.php.