Matrices induced by arithmetic functions, primes and groupoid actions of directed graphs
Ilwoo Cho ; Palle E. T. Jorgensen
Special Matrices, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper, we study groupoid actions acting on arithmetic functions. In particular, we are interested in the cases where groupoids are generated by directed graphs. By defining an injective map α from the graph groupoid G of a directed graph G to the algebra A of all arithmetic functions, we establish a corresponding subalgebra AG = C*[α(G)]︀ of A. We construct a suitable representation of AG, determined both by G and by an arbitrarily fixed prime p. And then based on this representation, we consider free probability on AG.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270904
@article{bwmeta1.element.doi-10_1515_spma-2015-0012,
     author = {Ilwoo Cho and Palle E. T. Jorgensen},
     title = {Matrices induced by arithmetic functions, primes and groupoid actions of directed graphs},
     journal = {Special Matrices},
     volume = {3},
     year = {2015},
     zbl = {1319.05150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0012}
}
Ilwoo Cho; Palle E. T. Jorgensen. Matrices induced by arithmetic functions, primes and groupoid actions of directed graphs. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0012/

[1] I. Cho, Operators Induced by Prime Numbers, Methods Appl. Math. Sci. 19, no. 4, (2013) 313 - 340. | Zbl 1332.46064

[2] I. Cho, Graph Groupoids and Partial Isometries, ISBN: 978-3-8383-1397-9, (2009) Lambert Academic Press

[3] I. Cho, Classification on Arithmetic Functions and Corresponding Free-Moment L-Functions, Bulletin Korea Math. Soc., (2015) To Appear. | Zbl 1329.11113

[4] I. Cho, p-Adic Banach-Space Operators and Adelic Banach-Space Operators, Opuscula Math., 34, no. 1, (2014) 29 - 65. | Zbl 06291546

[5] I. Cho, Fractals on Graphs, ISBN: 978-3-639-19447-0, (2009) Verlag with Dr. Muller

[6] I. Cho, Operations on Graphs, Groupoids, and Operator Algebras, ISBN: 978-8383-5271-8, (2010) Lambert Academic Press.

[7] I. Cho, C -Valued Functions Induced by Graphs, Compl. Anal. Oper. Theo., DOI:10.1007/s11785-014-0368-0, (2014).

[8] I. Cho, and P. E. T. Jorgensen, An Application of Free Probability to Arithmetic Functions, Compl. Anal. Oper. Theo., DOI: 10.1007/s11785-014-0378-y, (2014) | Zbl 06496671

[9] I. Cho and P. E. T. Jorgensen, Krein-Space Representation of Arithmetic Functions Determined by Primes, Alg. Rep. Theo, DOI: 10.1007/s11785-014-9473-z, (2014) | Zbl 1305.05233

[10] I. Cho, and P. E. T. Jorgensen, Krein-Space Operators Induced by Dirichlet Characters, Contemp. Math.: Commutative and Noncommutative Harmonic Analysis and Applications, (2014) 3 - 33. | Zbl 1322.11065

[11] I. Cho, and P. E. T. Jorgensen, Actions of Arithmetic Functions on Matrices and Corresponding Representations, Ann. Funct. Anal., (2014) To Appear. | Zbl 1309.46037

[12] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol 1, ISBN: 978-981-02-0880-6, (1994) World Scientific. | Zbl 0812.46076

[13] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Adv. Math., 55, ISBN: 0-521-65818-7, (1996) Cambridge Univ. Press.

[14] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables, CRM Monograph Series, Vol. 1, ISBN: 0-8218-1140-1, (2002) Published by Amer. Math. Soc.

[15] J. P. S. Kung, M. R. Murty, and G-C Rota, On the Ré dei Zeta Function, J. Number Theo., 12, (1980) 421 - 436. | Zbl 0446.05003

[16] P. Flajolet and R. Sedgewick, Analytic Combinatorics, ISBN: 978-0-521-89806-5, (2009) Cambridge Univ. Press.

[17] R. Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Amer. Math. Soc. Mem., vol 132, no. 627, (1998). | Zbl 0935.46056