Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .
@article{bwmeta1.element.doi-10_1515_spma-2015-0011, author = {Xiaogen Chen}, title = {A new bound for the spectral radius of Brualdi-Li matrices}, journal = {Special Matrices}, volume = {3}, year = {2015}, zbl = {1327.05131}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0011} }
Xiaogen Chen. A new bound for the spectral radius of Brualdi-Li matrices. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0011/
[1] S. Friedland, Eigenvalues of almost skew-symmetricmatrices and tournamentmatrices, in Combinatorial and Graph Theoretic Problems in Linear Algebra, IMA Vol. Math. Appl. 50(R.A. Brauldi, S. Friedland, and V. Klee, Eds.), Springer-Verlag, New York, (1993), 189–206.
[2] R.A. Brualdi and Q. Li, Problem 31, Discrete Math.43 (1983), 1133–1135.
[3] S.W. Drury, Solution of the Conjecture of Brualdi and Li, Linear Algebra Appl. 436 (2012), 3392–3399. [WoS] | Zbl 1241.05041
[4] S. Kirkland, A note on the sequence of Brualdi-Li matrices, Linear Algebra Appl. 248 (1996), 233–240. | Zbl 0865.15014
[5] X. Chen, A note the bound of spectral radius for Brualdi-Li matrices, Int. J. Appl. Math. Stat. 42 (2013), 491–498.
[6] S. Kirkland, A note on perron vectors for almost regular tournament matrices, Linear Algebra Appl. 266 (1997), 43–47. | Zbl 0901.15011
[7] S. Kirkland, Hypertournament matrices, score vectors and eigenvalues, Linear Multilinear Algebra 30 (1991), 261–274. [WoS] | Zbl 0751.15009
[8] S. Kirkland, An upper bound on the Perron value of an almost regular tournament matrix, Linear Algebra Appl. 361 (2003), 7–22. | Zbl 1019.15004