Acomplex Hadamard matrix is a square matrix H with complex entries of absolute value 1 satisfying HH* = nI, where * stands for the Hermitian transpose and I is the identity matrix of order n. In this paper, we first determine the image of a certain rational map from the d-dimensional complex projective space to Cd(d+1)/2. Applying this result with d = 3, we give constructions of complex Hadamard matrices, and more generally, type-II matrices, in the Bose–Mesner algebra of a certain 3-class symmetric association scheme. In particular, we recover the complex Hadamard matrices of order 15 found by Ada Chan. We compute the Haagerup sets to show inequivalence of resulting type-II matrices, and determine the Nomura algebras to show that the resulting matrices are not decomposable into generalized tensor products.
@article{bwmeta1.element.doi-10_1515_spma-2015-0009, author = {Takuya Ikuta and Akihiro Munemasa}, title = {Complex Hadamard Matrices contained in a Bose--Mesner algebra}, journal = {Special Matrices}, volume = {3}, year = {2015}, zbl = {1319.05153}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0009} }
Takuya Ikuta; Akihiro Munemasa. Complex Hadamard Matrices contained in a Bose–Mesner algebra. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0009/
[1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, 1984. | Zbl 0555.05019
[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235–265. | Zbl 0898.68039
[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989. | Zbl 0747.05073
[4] A. Chan, Complex Hadamard matrices and strongly regular graphs, arXiv:1102.5601.
[5] A. Chan and C. Godsil, Type-II matrices and combinatorial structures, Combinatorica, 30 (2010), 1–24. [WoS][Crossref] | Zbl 1224.05502
[6] A. Chan and R. Hosoya, Type-II matrices attached to conference graphs, J. Algebraic Combin. 20 (2004), 341–351. | Zbl 1056.05148
[7] R. Craigen, Equivalence classes of inverse orthogonal and unit Hadamard matrices, Bull. Austral. Math. Soc. 44 (1991), no. 1, 109–115. [Crossref] | Zbl 0719.05016
[8] E. van Dam, Three-class association schemes, J. Algebraic Combin. 10 (1999), 69–107. | Zbl 0929.05096
[9] J. M. Goethals and J. J. Seidel, Strongly regular graphs derived from combinatorial designs, Can. J.Math., 22, (1970), 597–614. | Zbl 0198.29301
[10] U. Haagerup, Orthogonal maximal Abelian *-subalgebras of n × n matrices and cyclic n-roots, Operator Algebras and Quantum Field Theory (Rome), Cambridge, MA, International Press, (1996), 296–322.
[11] R. Hosoya and H. Suzuki, Type II matrices and their Bose-Mesner algebras, J. Algebraic Combin. 17 (2003), 19–37. | Zbl 1011.05065
[12] F. Jaeger, M. Matsumoto, and K. Nomura, Bose-Mesner algebras related to type II matrices and spin models, J. Algebraic Combin. 8 (1998), 39–72. | Zbl 0974.05084
[13] R. Nicoara, A finiteness result for commuting squares of matrix algebras, J. Operator Theory 55 (2006), 101–116. | Zbl 1115.46052
[14] K. Nomura, Type II matrices of size five, Graphs Combin.15 (1999), 79–92. | Zbl 0935.05022
[15] A. D. Sankey, Type-II matrices in weighted Bose-Mesner algebras of ranks 2 and 3, J. Algebraic Combin. 32 (2010), 133–153. | Zbl 1230.05298
[16] F. Szöllősi, Exotic complex Hadamard matrices and their equivalence, Cryptogr. Commun. 2 (2010), no. 2, 187–198. | Zbl 1228.05097
[17] W. Tadej and K. Życzkowski A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006), 133–177.[Crossref]