Determinants and inverses of circulant matrices with complex Fibonacci numbers
Ercan Altınışık ; N. Feyza Yalçın ; Şerife Büyükköse
Special Matrices, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270970
@article{bwmeta1.element.doi-10_1515_spma-2015-0008,
     author = {Ercan Alt\i n\i \c s\i k and N. Feyza Yal\c c\i n and \c Serife B\"uy\"ukk\"ose},
     title = {Determinants and inverses of circulant matrices with complex Fibonacci numbers},
     journal = {Special Matrices},
     volume = {3},
     year = {2015},
     zbl = {1315.15028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0008}
}
Ercan Altınışık; N. Feyza Yalçın; Şerife Büyükköse. Determinants and inverses of circulant matrices with complex Fibonacci numbers. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0008/

[1] E. Altınışık, Ş. Büyükköse, Determinants of circulant matrices with some certain sequences, Gazi University Journal of Science 28 (1) (2015), 59-63. | Zbl 1307.15016

[2] D. Bozkurt, T. Y. Tam, Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers, App. Math. Comput. 219 (2012) 544-551. [WoS] | Zbl 1302.15005

[3] D. Bozkurt, T. Y. Tam, Determinants and inverses of r−circulant matrices associated with a number sequence, Linear Multilinear Algebra (2014) DOI:10.1080/03081087.2014.941291. [Crossref] | Zbl 06519818

[4] P. J. Davis, Circulant Matrices, Wiley, New York, 1979. | Zbl 0418.15017

[5] Z. Jiang, H Xin, F. Lu, Gaussian Fibonacci circulant type matrices, Abstr. Appl. Anal. 2014, Art. ID 592782, 10 pp.

[6] R. M. Gray, Toeplitz and Circulant Matrices: A review, Now Publishers Inc., Hanover, 2005. | Zbl 1143.15305

[7] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70 (1963), 289–291. | Zbl 0122.29402

[8] D. A. Lind, A circulant, Quart. 8 (1970) 449–455.

[9] S. Q. Shen, J. M. Cen, Y. Hao, On the determinants and inverses of circulant matrices with and Lucas numbers, App. Math. Comput. 217 (2011), 9790–9797. [WoS] | Zbl 1222.15010

[10] S. Solak, On the norms of circulant matrices with with and Lucas numbers, App. Math. Comput. 160 (2005), 125–132. [WoS] | Zbl 1066.15029

[11] M. Z. Spivey, Fibonacci identities via the determinant sum property, College Math. J. 37 (2006), 286–289.

[12] Y. Yazlık, N. Taşkara, On the inverse of circulantmatrix via generalized k-Horadam numbers, App.Math. Comput. 223 (2013), 191–196. | Zbl 1334.15076