Cross-Kerr nonlinearity: a stability analysis
Roope Sarala ; Francesco Massel
Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 4 (2015), / Harvested from The Polish Digital Mathematics Library

We analyse the combined effect of the radiation-pressure and cross-Kerr nonlinearity on the stationary solution of the dynamics of a nanomechanical resonator interacting with an electromagnetic cavity. Within this setup,we show how the optical bistability picture induced by the radiation-pressure force is modi fied by the presence of the cross-Kerr interaction term. More specifically, we show how the optically bistable region, characterising the pure radiation-pressure case, is reduced by the presence of a cross-Kerr coupling term. At the same time, the upper unstable branch is extended by the presence of a moderate cross-Kerr term, while it is reduced for larger values of the cross-Kerr coupling.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275992
@article{bwmeta1.element.doi-10_1515_nsmmt-2015-0002,
     author = {Roope Sarala and Francesco Massel},
     title = {Cross-Kerr nonlinearity: a stability analysis},
     journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
     volume = {4},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_nsmmt-2015-0002}
}
Roope Sarala; Francesco Massel. Cross-Kerr nonlinearity: a stability analysis. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 4 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_nsmmt-2015-0002/

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

[2] “The VIRGO interferometer,” (2015).

[3] “LSC - LIGO Scientific Collaboration,” (2015).

[4] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Nature 475, 359 (2011).

[5] R.W. Andrews, R.W. Peterson, T. P. Purdy, K. Cicak, R.W. Simmonds, C. A. Regal, and K.W. Lehnert, Nat. Phys. 10, 321 (2014). [Crossref]

[6] F. Massel, T. T. Heikkilä, J. M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, Nature 480, 351 (2011).

[7] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).

[8] A. Nunnenkamp, K. Børkje, and S. Girvin, Phys. Rev. Lett. 107, 063602 (2011).

[9] T. T. Heikkilä, F. Massel, J. Tuorila, R. Khan, and M. A. Sillanpää, Phys. Rev. Lett. 112, 203603 (2014).

[10] J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, Nat Commun 6, 6981 (2015). [Crossref]

[11] H. Seok, L. F. Buchmann, E. M. Wright, and P. Meystre, Phys. Rev. A 88, 063850 (2013). [Crossref]

[12] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, New J Phys 10, 095008 (2008). [Crossref]

[13] T. Purdy, D. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. Stamper-Kurn, Phys. Rev. Lett. 105, 133602 (2010).

[14] A. Xuereb and M. Paternostro, PRA 87, 023830 (2013).

[15] K. Nemoto and W. J. Munro, Phys. Rev. Lett. 93, 250502 (2004).

[16] Y.-B. Sheng, L. Zhou, S.-M. Zhao, and B.-Y. Zheng, Phys. Rev. A 85, 012307 (2012). [Crossref]

[17] Y.-B. Sheng, F.-G. Deng, and G. L. Long, Phys. Rev. A 82, 032318 (2010). [Crossref]

[18] Y.-B. Sheng and L. Zhou, Sci. Rep. 5, 7815 (2015). [Crossref]

[19] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 2007). | Zbl 1163.81001

[20] S. Aldana, C. Bruder, and A. Nunnenkamp, Phys. Rev. A 88, 043826 (2013). [Crossref]

[21] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).

[22] R. Khan, F. Massel, and T. T. Heikkilä, Phys. Rev. A 91, 043822 (2015). [Crossref]