This paper is devoted to numerical simulations of electronic transport in nanoscale semiconductor devices forwhich charged carriers are extremely confined in one direction. In such devices, like DG-MOSFETs, the subband decomposition method is used to reduce the dimensionality of the problem. In the transversal direction electrons are confined and described by a statistical mixture of eigenstates of the Schrödinger operator. In the longitudinal direction, the device is decomposed into a quantum zone (where quantum effects are expected to be large) and a classical zone (where they are negligible). In the largely doped source and drain regions of a DG-MOSFET, the transport is expected to be highly collisional; then a classical transport equation in diffusive regime coupled with the subband decomposition method is used for the modeling, as proposed in N. Ben Abdallah et al. (2006, Proc. Edind. Math. Soc. [7]). In the quantum region, the purely ballistic model presented in Polizzi et al. (2005, J. Comp. Phys. [25]) is used. This work is devoted to the hybrid coupling between these two regions through connection conditions at the interfaces. These conditions have been obtained in order to verify the continuity of the current. A numerical simulation for a DG-MOSFET, with comparison with the classical and quantum model, is provided to illustrate our approach.
@article{bwmeta1.element.doi-10_1515_nsmmt-2015-0001, author = {C. Jourdana and N. Vauchelet}, title = {Hybrid fluid-quantum coupling for the simulation of the transport of partially quantized particles in a DG-MOSFET}, journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications}, volume = {4}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_nsmmt-2015-0001} }
C. Jourdana; N. Vauchelet. Hybrid fluid-quantum coupling for the simulation of the transport of partially quantized particles in a DG-MOSFET. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 4 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_nsmmt-2015-0001/
[1] M. Baro, N. Ben Abdallah, P. Degond, A. El Ayyadi, A 1D coupled Schrödinger drift-diffusion model including collisions, J. Comp. Phys 203 (2005), 129–153. | Zbl 1067.82060
[2] G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les éditions de Physique (1996)
[3] N. Ben Abdallah, A Hybrid Kinetic-quantum model for stationary electron transport, J. Stat. Phys. 90 no 3-4 (1998), 627–662. [Crossref] | Zbl 0949.76075
[4] N. Ben Abdallah, On a multidimensional Schrödinger-Poisson scattering model for the semiconductors, J. Math. Phys. 41 no 3-4 (2000), 4241–4261. [Crossref] | Zbl 0977.82052
[5] N. Ben Abdallah, M. J. Cáceres, J. A. Carrillo, F. Vecil, A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs, J. Comput. Phys. 228 (2009), no. 17, 6553–6571. [WoS] | Zbl 1175.82072
[6] N. Ben Abdallah, F. Méhats, C. Negulescu, Adiabatic quantum-fluid transport models, Commun. Math. Sci. 4 (2006), no. 3, 621–650. | Zbl 1296.82064
[7] N. Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quantized particles : existence uniqueness and long time behaviour, Proc. Edinb. Math. Soc. (2006) 49, 513–549. | Zbl 1126.35051
[8] N. Ben Abdallah, M. Mouis, C. Negulescu, An accelerated algorithm for 2D simulations of the quantum ballistic transport in nanoscale MOSFETs, J. Comput. Phys. 225 (2007), no. 1, 74–99. | Zbl 1123.81042
[9] N. Ben Abdallah,O. Pinaud, Multiscale simulation of transport in an open quantum system: resonances andWKB interpolation, J. Comput. Phys., 213 (1) (2006), 288–310. | Zbl 1089.65074
[10] N. Ben Abdallah, S. Tang, On hybrid quantum-classical transport models, Math. Meth. Appl. Sci. 27 (2004), 643–667. [Crossref] | Zbl 1144.81521
[11] F. Brezzi, L.D. Marini, P. Pietra, Méthodes d’éléments finis mixtes et schéma de Scharfetter-Gummel, C.R. Acad. Sci. Paris Sér. I, 305 (1987), 599–604. | Zbl 0623.65131
[12] J.-P. Colinge, FinFETs and Other Multi-Gate Transistors, first ed., Springer Publishing Company, Incorporated, 2007.
[13] J. H. Davies, The Physics of Low Dimensional Semiconductors, Cambridge Univ. Press, Cambridge (1998)
[14] P. Degond, A. El Ayyadi, A coupled Schrödinger Drif-Diffusion model for Quantum semiconductor device simulations, J. Comp. Phys. 181 (2002), 222–259. | Zbl 1008.82033
[15] International technology roadmap for semiconductor industry. URL: http://www.itrs.net/.
[16] D. K. Ferry, S. M. Goodnick, Transport in Nanostructures. Cambridge Univ. Press, Cambridge (1997)
[17] C. Jourdana, P. Pietra, A hybrid classical-quantum transport model for the simulation of Carbon Nanotube transistors, SIAM J. Sci. Comput., 36 (2014), no. 3, B486–B507. [WoS] | Zbl 1306.82021
[18] C. Jourdana, P. Pietra, N. Vauchelet, A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors, submitted | Zbl 06023203
[19] A. Jüngel, Transport equations for semiconductors. Lecture Notes in Physics, 773. Springer-Verlag, Berlin, 2009.
[20] C.S. Lent, D.J. Kirkner, The quantum transmitting boundary method, J. Appl. Phys., 67 (1990), pp. 6353–6359.
[21] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor equations, Springer-Verlag, Vienna, 1990. | Zbl 0765.35001
[22] C. Negulescu, Small coherence length limit for a two dimensional quantum transport model, Asymptotic Analysis 49, no. 3-4 (2006), 295–329.
[23] P. Pietra, N. Vauchelet, Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET, J. Comput. Elec. (2008) 7:52–65. [Crossref]
[24] P. Pietra, N. Vauchelet, Numerical simulations of an energy-transport model for partially quantized particles, Commun. Math. Sci. 12 (2014), no. 1, 99–123. | Zbl 1294.82037
[25] E. Polizzi, N. Ben Abdallah, Subband decomposition approach for the simulation of quantum electron transport in nanostructures, J. Comp. Phys. 202 (2005), 150–180. | Zbl 1056.81092
[26] F. Poupaud,Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers,Asymptotic Analysis 4 (1991), 293–317. | Zbl 0762.35092
[27] D.L. Scharfetter, H.K. Gummel, Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices ED-16 (1969), 64–77. [Crossref]
[28] N. Vauchelet, Diffusive transport of partially quantized particles : LlogL solutions, Math. Models Methods Appl. Sci. (2008), Vol 18 no 4, 489–510. [WoS][Crossref] | Zbl 1159.35405
[29] N. Vauchelet, Diffusive limit of a two dimensional kinetic system of partially quantized particles, J. Stat. Phys. (2010) 139, 882–914. [WoS] | Zbl 1197.82122
[30] F. Vecil, J. M. Mantas, M. J. Cáceres, C. Sampedro, A. Godoy, F. Gámiz, A parallel deterministic solver for the Schrödinger- Poisson-Boltzmann system in ultra-short DG-MOSFETs: comparison with Monte-Carlo, Comput. Math. Appl. 67 (2014), no. 9, 1703–1721. [WoS]
[31] R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, Simulating quantum transport in nanoscale transistor : Real versus modespace approaches, J. Appl. Phys 92 (2002), n 7, 3730–3729.