Laplace - Fibonacci transform by the solution of second order generalized difference equation
Sandra Pinelas ; G. B. A. Xavier ; S. U. Vasantha Kumar ; M. Meganathan
Nonautonomous Dynamical Systems, Tome 4 (2017), p. 22-30 / Harvested from The Polish Digital Mathematics Library

The main objective of this paper is finding new types of discrete transforms with tuning factor t. This is not only analogy to the continuous Laplace transform but gives discrete Laplace-Fibonacci transform (LFt). This type of Laplace-Fibonacci transform is not available in the continuous case. The LFt generates uncountably many outcomes when the parameter t varies on (0,∞). This possibility is not available in the existing Laplace transform. All the formulae and results derived are verified by MATLAB.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288466
@article{bwmeta1.element.doi-10_1515_msds-2017-0003,
     author = {Sandra Pinelas and G. B. A. Xavier and S. U. Vasantha Kumar and M. Meganathan},
     title = {Laplace - Fibonacci transform by the solution of second order generalized difference equation},
     journal = {Nonautonomous Dynamical Systems},
     volume = {4},
     year = {2017},
     pages = {22-30},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_msds-2017-0003}
}
Sandra Pinelas; G. B. A. Xavier; S. U. Vasantha Kumar; M. Meganathan. Laplace - Fibonacci transform by the solution of second order generalized difference equation. Nonautonomous Dynamical Systems, Tome 4 (2017) pp. 22-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_msds-2017-0003/