Periodicity, almost periodicity for time scales and related functions
Chao Wang ; Ravi P. Agarwal ; Donal O’Regan
Nonautonomous Dynamical Systems, Tome 3 (2016), p. 24-41 / Harvested from The Polish Digital Mathematics Library

In this paper, we study almost periodic and changing-periodic time scales considered byWang and Agarwal in 2015. Some improvements of almost periodic time scales are made. Furthermore, we introduce a new concept of periodic time scales in which the invariance for a time scale is dependent on an translation direction. Also some new results on periodic and changing-periodic time scales are presented.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:281258
@article{bwmeta1.element.doi-10_1515_msds-2016-0003,
     author = {Chao Wang and Ravi P. Agarwal and Donal O'Regan},
     title = {Periodicity, almost periodicity for time scales and related functions},
     journal = {Nonautonomous Dynamical Systems},
     volume = {3},
     year = {2016},
     pages = {24-41},
     zbl = {1342.26067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_msds-2016-0003}
}
Chao Wang; Ravi P. Agarwal; Donal O’Regan. Periodicity, almost periodicity for time scales and related functions. Nonautonomous Dynamical Systems, Tome 3 (2016) pp. 24-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_msds-2016-0003/

[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston Inc., Boston, 2001. | Zbl 0978.39001

[2] C.Wang, R.P. Agarwal, Changing-periodic time scales and decomposition theorems of time scales with applications to functions with local almost periodicity and automorphy, Adv. Differ. Equ., 296 (2015) 1-21. [WoS][Crossref]

[3] C. Wang, Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014) 2828-2842. [WoS]

[4] C. Wang, R.P. Agarwal, A classification of time scales and analysis of the general delays on time scales with applications, Math. Meth. Appl. Sci., 39 (2016) 1568-1590. [WoS] | Zbl 1342.26066

[5] C. Wang, R.P. Agarwal, Uniformly rd-piecewise almost periodic functions with applications to the analysis of impulsive ∆- dynamic system on time scales, Appl. Math. Comput., 259 (2015) 271-292. [WoS]

[6] C. Wang, R.P. Agarwal, A further study of almost periodic time scales with some notes and applications, Abstr. Appl. Anal., (2014) 1-11 (Article ID 267384). [WoS]

[7] E.R. Kaufmann, Y.N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl., 319 (2006) 315-325. | Zbl 1096.34057

[8] Y. Li, C.Wang, Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales, Abstr. Appl. Anal., (2011). 22p (Article ID 341520). | Zbl 1223.34125

[9] M. Adıvar, A new periodicity concept for time scales, Math. Slovaca, 63 (2013) 817-828. [WoS] | Zbl 1340.34349

[10] C. Wang, R.P. Agarwal, Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations, Adv. Differ. Equ., 312 (2015) 1-9. [Crossref]

[11] A. Wilansky, Topics in Functional Analysis, Springer, Lecture Notes in Mathematics, Volume 45 (1967). | Zbl 0156.36103

[12] Y. Li, B. Li, Almost periodic time scales and almost periodic functions on time scales, J. Appl. Math., (2015) 1-8 (Article ID 730672).

[13] B. Sendov, Hausdorff Approximations, Kluwer Academic Publishers, Netherlands, (1990).