Nonoscillation Criteria for Two-Dimensional Time-Scale Systems
Özkan Öztürk ; Elvan Akın
Nonautonomous Dynamical Systems, Tome 3 (2016), p. 1-13 / Harvested from The Polish Digital Mathematics Library

We study the existence and nonexistence of nonoscillatory solutions of a two-dimensional systemof first-order dynamic equations on time scales. Our approach is based on the Knaster and Schauder fixed point theorems and some certain integral conditions. Examples are given to illustrate some of our main results.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276928
@article{bwmeta1.element.doi-10_1515_msds-2016-0001,
     author = {\"Ozkan \"Ozt\"urk and Elvan Ak\i n},
     title = {Nonoscillation Criteria for Two-Dimensional Time-Scale Systems},
     journal = {Nonautonomous Dynamical Systems},
     volume = {3},
     year = {2016},
     pages = {1-13},
     zbl = {1341.34084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_msds-2016-0001}
}
Özkan Öztürk; Elvan Akın. Nonoscillation Criteria for Two-Dimensional Time-Scale Systems. Nonautonomous Dynamical Systems, Tome 3 (2016) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_msds-2016-0001/

[1] D. R. Anderson, Oscillation and Nonoscillation Criteria for Two-dimensional Time-Scale Systems of First-Order Nonlinear Dynamic Equations. Electron. J. Differential Equations, Vol. 2009 (2009), No. 24, pp 1-13. | Zbl 1185.34140

[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001. | Zbl 0978.39001

[3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003. | Zbl 1025.34001

[4] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Siam, 2013.

[5] T. S. Hassan, Oscillation Criterion for Two-Dimensional Dynamic Systems on Time Scales. Tamkang J. Math., Volume 44 (2013), Number 3, 227-232. | Zbl 1291.34163

[6] B. Knaster, Un th´eor`eme sur les fonctions d’ensembles. Ann. Soc. Polon. Math. 6 (1928)133-134. | Zbl 54.0091.04

[7] Ö. Öztürk and E. Akın, Classification of Nonoscillatory Solutions of Nonlinear Dynamic Equations on Time Scales. Dynam. Systems. Appl. To appear, 2015.

[8] Ö. Öztürk, E. Akın and I. U. Tiryaki, On Nonoscillatory Solutions of Emden-Fowler Dynamic Systems on Time Scales. FILOMAT. To appear, 2015.

[9] W. Li, S. Cheng, Limiting Behaviors of Non-oscillatory Solutions of a Pair of Coupled Nonlinear Differential Equations. Proc. Edinb. Math. Soc. (2000) 43, 457-473. | Zbl 0979.34029

[10] W. Li, Classification Schemes for Nonoscillatory Solutions of Two-Dimensional Nonlinear Difference Systems. Comput.Math. Appl. 42 (2001) 341-355. [Crossref] | Zbl 1006.39013

[11] X. Zhang, Nonoscillation Criteria for Nonlinear Delay Dynamic Systems on Time Scales. International Journal of Mathematical, Computational, Natural and Physcial Enginnering Vol:8 (2014), No:1.

[12] S. Zhu and C. Sheng, Oscillation and nonoscillation Criteria for Nonlinear Dynamic Systems on Time Scales. Discrete Dynamics in Nature and Society , Volume 2012, Article ID 137471.