Controllability of the Semilinear Heat Equation with Impulses and Delay on the State
Hugo Leiva
Nonautonomous Dynamical Systems, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we prove the interior approximate controllability of the following Semilinear Heat Equation with Impulses and Delay [...] where Ω is a bounded domain in RN(N ≥ 1), φ : [−r, 0] × Ω → ℝ is a continuous function, ! is an open nonempty subset of Ω, 1ω denotes the characteristic function of the set ! and the distributed control u be- longs to L2([0, τ]; L2(Ω; )). Here r ≥ 0 is the delay and the nonlinear functions f , Ik : [0, τ] × ℝ × ℝ → ℝ are smooth enough, such that [...] Under this condition we prove the following statement: For all open nonempty subset ! of Ω the system is approximately controllable on [0, τ], for all τ > 0.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276524
@article{bwmeta1.element.doi-10_1515_msds-2015-0004,
     author = {Hugo Leiva},
     title = {Controllability of the Semilinear Heat Equation with Impulses and Delay on the State},
     journal = {Nonautonomous Dynamical Systems},
     volume = {2},
     year = {2015},
     zbl = {1332.93055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_msds-2015-0004}
}
Hugo Leiva. Controllability of the Semilinear Heat Equation with Impulses and Delay on the State. Nonautonomous Dynamical Systems, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_msds-2015-0004/

[1] N. Abada, M. Benchohra and H. Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay,CUBO A Mathematical Journal Vol. 02, (1-17). june 2010. | Zbl 1214.34064

[2] H. Akca, a. Boucherif and V. Covachev, Impulsive Functional-Differential Equations with Nonlocal Conditions, IJMMs 29:5 (2002) 251-256.

[3] A.E. Bashirov and Noushin Ghahramanlou, On Partial Approximate Controllability of Semilinear Systems. COGENTENG- Engeneering, Vol. 1, 1-13 (2014), doi: 10.1080/23311916.2014.965947 [Crossref] | Zbl 1316.93019

[4] A.E. Bashirov and Noushin Ghahramanlou, On Partial Complete Controllability of Semilinear Systems. Abstract and Applied Analysis, Vol. 2013, Article ID 52105, 8 pages. [WoS] | Zbl 1316.93019

[5] A.E. Bashirov, N. Mahmudov, N. Semi and H. Etikan, No On Partial Controllability Concepts. Inernational Journal of Control, Vol. 80, No. 1, January 2007, 1-7. | Zbl 1115.93013

[6] D. N. Chalishajar, Controllability of Impulsive Partial Neutral Funcional Differential Equation with Infinite Delay. Int. Journal of Math. Analysis, Vol. 5, 2011, No. 8, 369-380. | Zbl 1252.34090

[7] D.Barcenas, H. Leiva and Z. Sivoli, A Broad Class of Evolution Equations are Approximately Controllable, but Never Exactly Controllable. IMA J. Math. Control Inform. 22, no. 3 (2005), 310–320. | Zbl 1108.93014

[8] K. Balachandran and J. H. Kim, Remarks on the Paper Controllability of Second Order Differential Inclusion in Banach Spaces, (J. Math. Anal. Appl.) J. Math. Anal. Appli. 324 (2006), 746-749. [Crossref] | Zbl 1116.93019

[9] Lizhen Chen and Gang Li, Approximate Controllability of Impulsive Differential Equations with Nonlocal Conditions. Inter- national Journal of Nonlinear Science, Vol.10(2010), No. 4, pp. 438-446.

[10] R.F. Curtain, A.J. Pritchard, Infinite Dimensional Linear Systems. Lecture Notes in Control and Information Sciences, 8. Springer Verlag, Berlin (1978). | Zbl 0389.93001

[11] R.F. Curtain, H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory. Text in Applied Mathematics, 21. Springer Verlag, New York (1995). | Zbl 0839.93001

[12] V. Lakshmikantham, D. D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. | Zbl 0719.34002

[13] H. Leiva, N. Merentes and J. Sanchez "A Characterization of Semilinear Dense Range Operators and Applications", to appear in Abstract and Applied Analysis. | Zbl 1287.47054

[14] H. Leiva, N. Merentes and J. Sanchez “Interior Controllability of the Benjamin-Bona-Mahony Equation”. Journal of Mathe- matis and Applications, No. 33,pp. 51-59 (2010).

[15] H. Leiva, N. Merentes and J. Sanchez “Interior Controllability of the Semilinear Benjamin-Bona-Mahony Equation”. Journal of Mathematis and Applications, No. 35,pp. 97-109 (2012).

[16] H. Leiva, N. Merentes and J. Sanchez “Approximate Controllability of a Semilinear Heat Equation”. Interntional Journal of Partial Differential Equations Mathematis,Vol. 2013, Art. ID 424309, 7 pages. | Zbl 1303.93040

[17] Hugo Leiva, Approximate Controllability of Semilinear Impulsive Evolution Equations, Abstract and Applied Analysis, Vol. 2015, Article ID 797439, 7 pages [WoS] | Zbl 1320.93021

[18] A. M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations. World Scientific Series on Nonlinear Science Series A, Vol. 14, 1995. | Zbl 0837.34003

[19] A. Carrasco, Hugo Leiva, J.L. Sanchez and A. Tineo M, Approximate Controllability of the Semilinear Impulsive BeamEquation with Impulses. Transaction on IoT and Cloud Computing 2(3) 70-88, 2014.

[20] Hugo Leiva, Controllability of Semilinear Impulsive Nonautonomous Systems, International Journal of Control, 2014, http/dx.doi.org/10.1080/00207179.2014.966759. [Crossref][WoS]

[21] Hugo Leiva and N. Merentes,Approximate Controllability of the Impulsive Semilinear Heat Equation. Journal of Mathematics and Applications, No. 38, pp 85-104 (2015)

[22] S. Selvi and M. Mallika Arjunan, Controllability Results for Impulsive Differential Systems with Finite Delay J. Nonlinear Sci. Appl. 5 (2012), 206-219. | Zbl 1293.93107

[23] R. Shikharchand Jain and M. Baburao Dhakne, On Mild Solutions of Nonlocal Semilinear Impulsive Functional Integro- Differential Equations, Applied Mathematics E-Notes, 13(2014), 109-119. | Zbl 1288.45008