In this work, we present a new concept of Stepanov weighted pseudo almost periodic and automorphic functions which is more generale than the classical one, and we obtain a new existence result of μ-pseudo almost periodic and μ-pseudo almost automorphic mild solutions for some nonautonomous evolution equations with Stepanov μ-pseudo almost periodic terms. An example is shown to illustrate our results.
@article{bwmeta1.element.doi-10_1515_msds-2015-0002, author = {Abdelkarim-Nidal Akdad and Khalil Ezzinbi and Lotti Souden}, title = {Pseudo almost periodic and automorphic mild solutions to nonautonomous neutral partial evolution equations}, journal = {Nonautonomous Dynamical Systems}, volume = {2}, year = {2015}, zbl = {1329.34105}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_msds-2015-0002} }
Abdelkarim-Nidal Akdad; Khalil Ezzinbi; Lotti Souden. Pseudo almost periodic and automorphic mild solutions to nonautonomous neutral partial evolution equations. Nonautonomous Dynamical Systems, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_msds-2015-0002/
[1] C. Zhang, Integration of vector-valued pseudo-almost periodic functions, Proc. Am. Math. Soc. 121(1), (1994), 167-174. | Zbl 0818.42003
[2] C.Y. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl. 151, (1994), 62-76.
[3] C.Y. Zhang, Pseudo almost periodic solutions of some differential equations II, J. Math. Anal. Appl. 192, (1995), 543-561. | Zbl 0826.34040
[4] C. Corduneanu, Almost Periodic Functions, Wiley, New York, 1968.
[5] S. Bochner; Continuous mappings of almost automorphic and almost periodic functions, Proc. Nat. Acad. Sci. USA, 52, (1964), 907-910. [Crossref] | Zbl 0134.30102
[6] H.X. Li, L.L. Li, Stepanov-like pseudo almost periodicity and semilinear differential equations with uniform continuity, Reaults. Math. 59, (2011), 43-61. [WoS] | Zbl 1209.35011
[7] J. Blot, G.M. Mophou, G.M. NGuérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Analysis, Theory, Methods and Applications Vol 71, Issue 3-4, (2009), 903-909. | Zbl 1177.34077
[8] J. Blot, P. Cieutat and K. Ezzinbi: New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications Applicable Analysis, (2011), 1-34. | Zbl 1266.43004
[9] J. Blot, P. Cieutat and K. Ezzinbi: Measure theory and pseudo almost automorphic functions, new developements and applications Applicable Analysis, (2011), 1-29. [WoS]
[10] M. Damak, K. Ezzinbi and L. Souden, Weighted pseudo-almost periodic solutions for some neutral partial functional differential equations, Vol. 2012, No. 47, (2012), 1-13. | Zbl 1244.34092
[11] M. Frechet, Sur le théorème ergodique de Birkhoff, C. R. Math. Acad. Sci. Paris 213, (1941), 607-609 (in French). | Zbl 67.0231.02
[12] L.Maniar, R. Schnaubelt, Almost periodicity of inhomogeneous parabolic evolution equations , in: Lecture Notes in Pure and Appl. Math. vol. 234, Dekker, New york, 2003, 299-318. | Zbl 1047.35078
[13] T.Diagana: Existence of weighted pseudo almost periodic solutions to some classes of hyperbolic evolution equations. J. Math. Anal. Appl. 350, (2009), 18-28. | Zbl 1167.34023
[14] J. Liang, T.J. Xiao, J. Zhang, Decomposition of weighted pseudo almost periodic functions, Nonlinear Anal. 73, (10), (2010), 3456-3461. | Zbl 1198.43004
[15] T.Diagana: Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations Nonlinear Analysis. 69, (2008), 4277-4285. | Zbl 1169.34330
[16] T. Diagana, Giséle M. Mophou and Gaston M. N’Guérékata: Existence of weighted pseudo almost periodic solutions to some classes of differential equations with Sp-weighted pseudo almost periodic coefficients Nonlinear Analysis. 72, (2010), 430- 438. | Zbl 1184.43005
[17] T. Diagana: stepanov -like pseudo almost periodicity and its application to some nonautonomes differential equation, Commun. Math. Anal.3, (2007), 9-18.
[18] T. Diagana: Weighted pseudo almost periodic functions and applications C.R.A.S, 343, (10), (2006), 643-646.
[19] T. Diagana: Existence of weighted pseudo-almost periodic solutions to some classes of nonautonomous partial evolution equations Nonlinear Analysis. 74, (2011), 600-615. | Zbl 1209.34074
[20] T. Diagana: Weighted pseudo-almost periodic solutions to some differential equations Nonlinear Analysis. 68, (2008), 2250- 2260. | Zbl 1131.42006
[21] T. Diagana, Existence of p-almost automorphic mild solution to some abstract differential equations, Int. J. Evol. Equ. 1, (2005), 57-67. | Zbl 1083.35052
[22] T.J. Xiao, J. Liang, J. Zhang, Pseudo almost automorphic solution to semilinear differential equations in Banach spaces, Semigroup Forum 76, (2008), 518–524. [WoS][Crossref] | Zbl 1154.46023
[23] H. Lee and H. Alkahby, Stepanov-like almost automorphic solutions of nonautonomous semilinear evolution equations with delay, Nonlinear Anal. 69, (2008), 2158-2166. | Zbl 1162.34063
[24] K. Ezzinbi, S. Fatajou, G.M. N’Guérékata, Pseudo almost automorphic solutions to some neutral partial functional differential equations in Banach spaces, Nonlinear Anal. TMA 70, (2009), 1641-1647. | Zbl 1165.34418
[25] G.M. N’Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York, 2005.
[26] P. Acquistapace, B. Terreni, A unified approach to abstract linear parabolic equations, Rend. Sem. Mat. Univ. Padova. 78, (1987), 47-107. | Zbl 0646.34006
[27] G.M. N’Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Analysis. TMA, 68, (2008), 2658-2667. [Crossref] | Zbl 1140.34399
[28] R. P. Agarwal, Bruno de Andrade and Claudio Cuevas,Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations Nonlinear Analysis: RealWorld Applications. 11, (2010), 3532-3554. | Zbl 1248.34004
[29] Z.R. Hu, Z. Jin, Stepanov-like pseudo almost periodic mild solutions to perturbed nonautonomous evolution equations with infinite delay, Nonlinear Anal. 71, (2009), 5381-5391. | Zbl 1173.42308
[30] K.J. Engel, R. Nagel, one parametr semigroups for linear evolution equations, in: Graduate texts in Mathematics, Springer- Verlag, 2000.
[31] M. Baroun, S. Boulite, G. M. N’Guérékata, L. Maniar, Almost automorphy of semilinear parabolic evolution equations, Electronic Journal of Differential Equations, No. 60 (2008), 1–9. | Zbl 1170.34344
[32] Z. Hu, Z. Jin Stepanov-like pseudo almost periodic mild solutions to nonautonomous neutral partial evolution equations Nonlinear Analysis, 75, (2012), 244-252. | Zbl 1236.42006
[33] Z. Hu, Z. Jin Stepanov-like pseudo almost automorphic mild solutions to nonautonomous evolution equations Nonlinear Analysis, 71, (2009), 2349-2360. | Zbl 1172.34038
[34] H. S. Dinga, J. Lianga, G. M. N’Guérékatab, T. J. Xiao Pseudo almost periodicity of some nonautonomous evolution equations with delay Nonlinear Analysis, 67, (2007), 1412-1418.
[35] H. Lee, H. Alkahby Stepanov-like almost automorphic solutions of nonautonomous semilinear evolution equations with delay Nonlinear Analysis, 69, (2008), 2158-2166. | Zbl 1162.34063
[36] T.J. Xiao, X.X. Zhu, J. Liang, Pseudo almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear Anal. TMA 70 (2009), 4079-4085. | Zbl 1175.34076