Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications
Mark O. Gluzman ; Nataliia V. Gorban ; Pavlo O. Kasyanov
Nonautonomous Dynamical Systems, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270930
@article{bwmeta1.element.doi-10_1515_msds-2015-0001,
     author = {Mark O. Gluzman and Nataliia V. Gorban and Pavlo O. Kasyanov},
     title = {Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications},
     journal = {Nonautonomous Dynamical Systems},
     volume = {2},
     year = {2015},
     zbl = {1321.35093},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_msds-2015-0001}
}
Mark O. Gluzman; Nataliia V. Gorban; Pavlo O. Kasyanov. Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications. Nonautonomous Dynamical Systems, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_msds-2015-0001/

[1] J.M. Arrieta, A. Rodrígues-Bernal, J. Valero, Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos 16(2006), 2695–2984. | Zbl 1185.37161

[2] Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. International Journal of Bifurcation and Chaos (2010). DOI: 10.1142/S0218127410027246 [Crossref][WoS] | Zbl 1202.37003

[3] M.I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus 21(1969) 611–619. [Crossref]

[4] J.M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Journal of Nonlinear Science 7(1997) 475–502. Erratum, ibid 8:233,1998. Corrected version appears in ‘Mechanics: from Theory to Computation’, pages 447–474, Springer Verlag, 2000. [Crossref]

[5] J.M. Ball, Global attractors for damped semilinear wave equations, DCDS 10(2004) 31–52. [Crossref] | Zbl 1056.37084

[6] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976. | Zbl 0328.47035

[7] V.V. Chepyzhov, M.I. Vishik, Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems, Mathematical Notes 71(2002) 177–193, doi: 10.1023/A:1014190629738. [Crossref] | Zbl 1130.37404

[8] V.V. Chepyzhov, M.I. Vishik, Trajectory attractor for reaction-diffusion system with diffusion coeflcient vanishing in time, Discrete and Continuous Dynamical Systems – Series A. 27(2013) 1493–1509. | Zbl 1194.35072

[9] V.V. Chepyzhov, Conti M., V. Pata, A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems. 32(2012) 2079–2088. | Zbl 1278.37033

[10] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc., New York, 1983. | Zbl 0582.49001

[11] H. D´iaz, J. D´iaz, On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat. 96(2002) 123–128.

[12] J. D´iaz, J. Hern´andez, L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl. 216(1997) 593–613.

[13] J. D´iaz, J. Hern´andez, L. Tello, Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat. 96(3)(2002) 357–366.

[14] J. D´iaz, L. Tello, Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci. 25 (2002) 327–334. | Zbl 1181.35186

[15] E. Feireisl, J. Norbury, Some existence and nonuniqueness theorems for solutions of parabolic equationswith discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A. 119(1–2)(1991) 1–17. | Zbl 0784.35117

[16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen, Akademie- Verlag, Berlin, 1974 | Zbl 0289.47029

[17] M.O. Gluzman, N.V. Gorban, P.O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters 39(2015) 19-21, doi: 10.1016 / j.aml.2014.08 .006 [Crossref][WoS] | Zbl 1318.35140

[18] G.R. Goldstein, A. Miranville, A Cahn-Hilliard-Gurtin Model With Dynamic Boundary Conditions, Discrete & Continuous Dynamical Systems – Series S 6(2013) | Zbl 1277.35202

[19] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory’s nonlinearity, Nonlinear Analysis, Theory, Methods and Applications 98(2014) 13–26, doi: 10.1016/j.na.2013.12.004. [Crossref] | Zbl 1286.35045

[20] N.V. Gorban, P.O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domai, Solid Mechanics and its Applications 211(2014) 205–220. | Zbl 1323.35081

[21] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, L.S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Solid Mechanics and its Applications 211(2014) 221–237. | Zbl 1327.35232

[22] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l’Academie des Sciences-Series I – Mathematics 330 (2000) 713–718 | Zbl 1151.35315

[23] P. Kalita, G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014) 124–143. | Zbl 1292.76032

[24] P. Kalita, G. Lukaszewicz, Attractors for Navier–Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications 19(2014) 75–88. [Crossref][WoS] | Zbl 06324810

[25] O.V. Kapustyan, P.O. Kasyanov, J. Valero, M.Z. Zgurovsky, Structure of uniform global attractor for general non-autonomous reaction-diffusion system, Solid Mechanics and its Applications 211(2014) 163–180. | Zbl 1323.35084

[26] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis 13(2014) 1891–1906, doi:10.3934/cpaa.2014.13.1891. [Crossref] | Zbl 1304.35119

[27] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Communications on Pure and Applied Analysis 34(2014) 4155–4182, doi:10.3934/dcds.2014.34.4155. [Crossref] | Zbl 1304.35118

[28] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Regularity of Weak Solutions and Their Attractors for a Parabolic Feedback Control Problem, Set-Valued Var. Anal. 21(2013) 271-282, doi: 10.1007/s11228-013-0233-8. [Crossref] | Zbl 1327.35468

[29] P.O. Kasyanov, Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis 47(2011) 800–811. [Crossref] | Zbl 1300.47084

[30] P.O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes 92(2012) 205–218. [Crossref][WoS] | Zbl 1272.47088

[31] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Long-Time Behaviour of Solutions for Autonomous Evolution Hemivariational Inequality with Multidimensional ‘Reaction-Displacement’ Law, Abstract and Applied Analysis 2012(2012) 21 pages, doi:10.1155/2012/450984. [Crossref][WoS] | Zbl 1237.49015

[32] V.S. Melnik, J. Valero, On attractors of multivalued semiflows and differential inclusions. Set Valued Anal. 6(1998) 83–111, doi:10.1023/A:1008608431399. [Crossref][WoS]

[33] S. Mig´orski, On the existence of solutions for parabolic hemivariational inequalities. Journal of Computational and Applied Mathematics 129(2001), 77–87.

[34] S. Mig´orski, A. Ochal, Optimal Control of Parabolic Hemivariational Inequalities, Journal of Global Optimization 17(2000) 285–300. [Crossref] | Zbl 0974.49009

[35] F. Morillas, J. Valero, Attractors for reaction-diffusion equation in Rn with continuous nonlinearity. Asymptotic Analysis 44(2005), 111–130. | Zbl 1083.35022

[36] M. Otani, H. Fujita, On existence of strong solutions for du dt (t)+@'1(u(t))−@'2(u(t)) ∋ f (t), Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. 24(3)(1977) 575–605. | Zbl 0386.47040

[37] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhauser, Basel, 1985. | Zbl 0579.73014

[38] G.R. Sell, Yu. You, Dynamics of evolutionary equations. Springer, New York 2002. | Zbl 1254.37002

[39] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. | Zbl 0662.35001

[40] D. Terman, A free boundary problem arising from a bistable reaction–diffusion equation, Siam J.Math. Anal. 14(1983) 1107– 1129. [Crossref] | Zbl 0534.35085

[41] D. Terman, A free boundary arising from a model for nerve conduction, J. Diff. Eqs. 58(3)(1985) 345–363. | Zbl 0652.35055

[42] J. Valero, Attractors of Parabolic Equations Without Uniqueness, Journal of Dynamics and Differential Equations 13(2001) 711–744, doi:10.1023/A:1016642525800. [Crossref]

[43] J. Valero, A.V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction–diffusion systems, Journal of Mathematical Analysis and Applications 2006, doi:10.1016/j.jmaa.2005.10.042. [Crossref] | Zbl 1169.35345

[44] M.I. Vishik, S.V. Zelik, V.V. Chepyzhov, Strong Trajectory Attractor for Dissipative Reaction-Diffusion System, DocladyMathematics (2010), doi: 10.1134/S1064562410060086. [Crossref][WoS] | Zbl 1227.35084

[45] N.V. Zadoianchuk, P.O. Kasyanov, Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis 48(2012) 414–428. [Crossref] | Zbl 1306.34090

[46] M.Z. Zgurovsky, P.O. Kasyanov, O.V. Kapustyan, J. Valero, N.V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, Springer, Berlin, 2012, doi:10.1007/978-3-642-28512-7. [Crossref] | Zbl 1317.86003

[47] M.Z. Zgurovsky, P.O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Solid Mechanics and its Applications 211(2014) 149–162. | Zbl 1327.34116

[48] M.Z. Zgurovsky, P.O. Kasyanov, N.V. Zadoianchuk, Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters 25(2012) 1569–1574, doi: 10.1016/j.aml.2012.01.016. [WoS][Crossref] | Zbl 1250.49015