Membrane-Channel Protein System Mesh Construction for Finite Element Simulations
Tiantian Liu ; Shiyang Bai ; Bin Tu ; Minxin Chen ; Benzhuo Lu
Molecular Based Mathematical Biology, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

We present a method of constructing the volume meshes of the membrane-channel protein system for finite element simulation of ion channels. The membrane channel system consists of the solvent region and the membrane-protein region. Our method focuses on labeling the tetrahedra in the solvent and membrane-protein regions and collecting the interface triangles between different regions. It contains two stages. Firstly, a volume mesh conforming the surface of the channel protein is generated by the surface and volume mesh generation tools: TMSmesh and TetGen. Then a walk-and-detect algorithm is used to identify the pore region to embed the membrane correctly. This method is shown to be robust because of its independence of the pore structure of the ion channels. In addition, we can also get the information of whether the ion channel is open or closed by the walk-and-detect algorithm. An on-line meshing procedure will be available at our website www.continuummodel.org.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275995
@article{bwmeta1.element.doi-10_1515_mlbmb-2015-0008,
     author = {Tiantian Liu and Shiyang Bai and Bin Tu and Minxin Chen and Benzhuo Lu},
     title = {Membrane-Channel Protein System Mesh Construction for Finite Element Simulations},
     journal = {Molecular Based Mathematical Biology},
     volume = {3},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_mlbmb-2015-0008}
}
Tiantian Liu; Shiyang Bai; Bin Tu; Minxin Chen; Benzhuo Lu. Membrane-Channel Protein System Mesh Construction for Finite Element Simulations. Molecular Based Mathematical Biology, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_mlbmb-2015-0008/

[1] D. Marx and J. Hutter. Modern Methods and Algorithms of Quantum Chemistry. John von Neumann Institute for Computing, J¨ulich, 2000.

[2] J. Ostmeyer, S. Chakrapani, A. C. Pan, E. Perozo, and B. Roux. Recovery from slow inactivation in K+ channels is controlled by water molecules. Nature, 501(7465):121–124, 2013. [WoS]

[3] M. Jensen, V. Jogini, D. W. Borhani, A. E. Leffler, R. O. Dror, and D. E. Shaw. Mechanism of voltage gating in potassium channels. Science, 336(6078):229–233, 2012.

[4] S. Li, M. Hoyles, S. Kuyucak, and S. Chung. Brownian dynamics study of ion transport in the vestibule of membrane channels. Biophys. J., 74:37–47, 1998. [Crossref]

[5] B. Corry, S. Kuyucak, and S. H. Chung. Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. Biophys. J., 78:2364–2381, 2000. [Crossref]

[6] S. Kuyucak, O. S. Andersen, and S. H. Chung. Models of permeation in ion channels. Rep. Prog. Phys., 64:1427–1472, 2001. [Crossref]

[7] G. A. Huber and J. A. McCammon. Browndye: A software package for brownian dynamics. Comp. Phys. Comm., 181:1896– 1905, 2010. [Crossref] | Zbl 1216.92007

[8] B. Z. Lu and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: Size effects on ionic distributions and diffusion-reaction rates. Biophys. J., 100(10):2475 – 2485, 2011. [WoS][Crossref]

[9] B. Z. Lu. Poisson-Nernst-Planck equations. Encyclopedia of Applied and Computational Mathematics; Engquist, B., Ed.; Springer-Verlag: Berlin Heidelberg, 2013. | Zbl 1262.65182

[10] B. Roux, T. Allen, S. Berneche, andW. Im. Theoretical and computational models of biological ionchannels. Q. Rev. Biophys., 7(1):1–103, 2004.

[11] R. S. Eisenberg. Ionic channels in biological membranes: natural nanotubes. Acc. Chem. Res., 31:117–123, 1998. [Crossref]

[12] D. Chen, J. Lear, and R. S. Eisenberg. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys. J., 72:97–116, 1997. [Crossref]

[13] M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan. A lattice relaxation algorithm for three-dimensional Poisson-Nernst- Planck theory with application to ion transport through the gramicidin a channel. Biophys. J., 76:642–656, 1999. [Crossref]

[14] Q. Zheng, D. Chen, and G. W. Wei. Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys., 230(13):5239–5262, 2011. [WoS][Crossref] | Zbl 1222.82073

[15] B. Z. Lu, M. J. Holst, J. A. McCammon, and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular diffusionreaction processes I: Finite element solutions. J. Comput. Phys., 229(19):6979–6994, 2010. | Zbl 1195.92004

[16] B. Z. Lu and J. A. McCammon. Molecular surface-free continuum model for electrodiffusion processes. Chem. Phys. Lett., 451(4-6):282–286, 2008. [WoS]

[17] B. Z. Lu, Y. C. Zhou, Gary A. Huber, S. D. Bond, Michael J. Holst, and J. A. McCammon. Electrodiffusion: A continuummodeling framework for biomolecular systems with realistic spatiotemporal resolution. J. Chem. Phys., 127(13):135102, 2007. [WoS]

[18] B. Tu, M. X. Chen, Y. Xie, L. B. Zhang, B. Eisenberg, and B.Z. Lu. A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J. Comput. Chem., 34:2065–2078, 2013. [Crossref][WoS]

[19] B. Tu, S. Y. Bai, M. X. Chen, Y. Xie, L. B. Zhang, and B. Z. Lu. A software platform for continuum modeling of ion channels based on unstructured mesh. Computational Science & Discovery, 7:014002, 2014.

[20] U. Hollerbach, D. P. Chen, and R. S. Eisenberg. Two- and three-dimensional Poisson-Nernst-Planck simulations of current flow through gramicidin a. J. Sci. Comput., 16(4):373–409, 2002. [Crossref] | Zbl 0997.78004

[21] S. R. Mathur and J. Y. Murthy. A multigrid method for the Poisson-Nernst-Planck equations. SIAM J. Appl. Math., 52(17– 18):4031–4039, 2009. | Zbl 1167.76343

[22] M. X. Chen and B. Z. Lu. TMSmesh: A robust method for molecular surface mesh generation using a trace technique. J. Chem. Theory Comput., 7:203–212, 2011. [WoS][Crossref]

[23] M. X. Chen, B. Tu, and B. Z. Lu. Triangulated manifold meshing method preserving molecular surface topology. Journal of Molecular Graphics and Modelling, 38:411–418, 2012.

[24] M. Sanner, A. Olson, and J. Spehner. Reduced surface: An eflcient way to compute molecular surface properties. Biopolymers, 38:305–320, 1996. [Crossref]

[25] S. Decherchi and W. Rocchia. A general and robust ray casting based algorithm for triangulating surfaces at the nanoscale. PLoS One, 8(4):e59744, 2013.

[26] C. Bajaj, G. Xu, and Q. Zhang. Bio-molecule surfaces construction via a higher-order level-set method. Journal of Computer Science and Technology, 23(6):1026–1036, 2008. [Crossref][WoS]

[27] W. Zhao, G. Xu, and C. Bajaj. An algebraic spline model of molecular surfaces for energetic computations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(6):1458–1467, 2011. [WoS][Crossref]

[28] Z.Y. Yu, M. J. Holst, and J. McCammon. High-fidelity geometric modeling for biomedical applications. Finite Elem. Anal. Des., 44(11):715–723, 2008. [WoS]

[29] D. Xu and Y. Zhang. Generating triangulated macromolecular surfaces by Euclidean Distance Transform. PLoS ONE, 4(12):e8140, 2009. [WoS]

[30] B. Lee and F.M. Richards. The interpretation of protein structures: estimation of static accessibility. J.Mol. Biol., 55(3):379– 400, 1971. [Crossref]

[31] F. M. Richards. Areas, volumes, packing and protein structure. Annual Review in Biophysics and Bioengineering, 6:151–176, 1977.

[32] Y.J. Zhang, G.L. Xu, and C. Bajaj. Quality meshing of implicit solvation models of biomolecular structures. Comput. Aided Geom. Des, 23(6):510–530, 2006. | Zbl 1098.92034

[33] H. Edelsbrunner. Deformable smooth surface design. Discrete and Computational Geometry, 21:87–115, 1999. [Crossref] | Zbl 0924.68197

[34] A. Zaharescu, E. Boyer, and R. P. Horaud. Transformesh: a topology-adaptive mesh-based approach to surface evolution. In Proceedings of the Eighth Asian Conference on Computer Vision, II:166–175, November 2007.

[35] H. Si. Tetgen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 41(2). [WoS]

[36] Oliver S. Smart, Joseph G. Neduvelil, Xiaonan Wang, B.A. Wallace, and Mark S.P. Sansom. Hole: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 14(6):354 – 360, 1996. [Crossref]

[37] S.Y. Bai and B.Z. Lu. VCMM: A visual tool for continuum molecular modeling. Journal of Molecular Graphics and Modelling, 55:44–49, 2014.

[38] O. Devillers, S. Pion, and M. Teillaud. Walking in a triangulation. International Journal of Foundations of Computer Science, 13(02):181–199, 2002. | Zbl 1066.68139

[39] O. S. Andersen. Gramicidin channels. Annu. Rev. Physiol., 46:531–548, 1984. [Crossref]

[40] R. E. Koeppe and O. S. Andersen. Engineering the gramicidin channel. Annu. Rev. Biophys. Biomol. Struct., 25:231–258, 1996. [Crossref]

[41] S. Maeda, S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, and T. Tsukihara. Structure of the connexin 26 gap junction channel at 3.5Å resolution. Nature, 458(7238):579–602, 2009.

[42] T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker. PDB2PQR: an automated pipeline for the setup, execution, and analysis of poisson-boltzmann electrostatics calculations. Nucleic Acids Res., 32:W665–W667, 2004.

[43] A. Liu and B. Joe. Relationship between tetrahedron shape measures. BIT Numerical Mathematics, 34(2):268–287, 1994. [Crossref] | Zbl 0806.65104

[44] Tiantian Liu, Minxin Chen, and Benzhuo Lu. Parameterization for molecular gaussian surface and a comparison study of surface mesh generation. Journal of Molecular Modeling, 21(5), 2015.