A Quantum Corrected Poisson-Nernst-Planck Model for Biological Ion Channels
Jinn-Liang Liu
Molecular Based Mathematical Biology, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

A quantum corrected Poisson-Nernst-Planck (QCPNP) model is proposed for simulating ionic currents through biological ion channels by taking into account both classical and quantum mechanical effects. A generalized Gummel algorithm is also presented for solving the model system. Compared with the experimental results of X-ray crystallography, it is shown that the quantum PNP model is more accurate than the classical model in predicting the average number of ions in the channel pore. Moreover, the electrostatic potential has been found to reach as high as 19% difference between two models around the charged vestibule which has been shown to play a significant role in the permeation of ions through ion-selective ligand-gated or voltage-activated channels. These results indicate that the QCPNP model may be considered as a more refined continuum model that can be incorporated into a multi-scale electrophysiology modeling.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271784
@article{bwmeta1.element.doi-10_1515_mlbmb-2015-0005,
     author = {Jinn-Liang Liu},
     title = {A Quantum Corrected Poisson-Nernst-Planck Model for Biological Ion Channels},
     journal = {Molecular Based Mathematical Biology},
     volume = {3},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_mlbmb-2015-0005}
}
Jinn-Liang Liu. A Quantum Corrected Poisson-Nernst-Planck Model for Biological Ion Channels. Molecular Based Mathematical Biology, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_mlbmb-2015-0005/

[1] U. Ascher, P. Markowich, C. Schmeiser, H. Steinruck, and R. Weiss, Conditioning of the steady state semiconductor device problem, SIAM J. Appl. Math. 49 (1989) 165-185. | Zbl 0699.35046

[2] V. Barcilon, D. P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: Part II, SIAM J. Appl. Math. 53 (1992)1405-1425. | Zbl 0753.35105

[3] D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables I and II, Phys. Rev., 85 (1952), pp. 166-179 and 180-93. | Zbl 0046.21004

[4] F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989) 1342-1355. | Zbl 0686.65088

[5] M. Cai and P. C. Jordan, How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel? Biophys. J. 57 (1990) 883-891.

[6] D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J. 64 (1993) 1405-1421.

[7] R.-C. Chen and J.-L. Liu, An iterative method for adaptive finite element solutions of an energy transport model of semiconductor devices, J. Comput. Phys. 189 (2003) 579-606. | Zbl 1032.82039

[8] R.-C. Chen and J.-L. Liu, A quantumcorrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys. 204 (2005) 131-156. | Zbl 1143.82324

[9] R.-C. Chen and, J.-L. Liu, An accelerated monotone iterative method for the quantum-corrected energy transport model, J. Comp. Phys. 227 (2008) 6266-6240. | Zbl 1151.82419

[10] C. de Falco, J.W. Jerome, and R. Sacco, Quantumcorrected drift-diffusion models: Solution fixed pointmap and finite element approximation, J. Comput. Phys., 228 (2009), pp. 1770-1789. | Zbl 1158.82012

[11] R. Eisenberg, From structure to function in open ionic channels, J. Membr. Biol. 171 (1999) 1-24.

[12] R. Eisenberg, Multiple scales in the simulation of ion channels and proteins, J. Phys. Chem. C 114 (2010) 20719-20733. [WoS]

[13] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis EnVarA of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys. 133 (2010) 104104. [WoS]

[14] C. L. Gardner,W. Nonner and R. S. Eisenberg, Electrodiffusion model simulation of ionic channels: 1D simulations, J. Comput. Electronics 3 (2004) 25-31.

[15] H. K. Gummel, A self-consistent iterative scheme for the one-dimensional steady-state transistor calculations, IEEE Trans. Elec. Dev. ED-11 (1964) 163-174.

[16] B. Hille, Ionic Channels of Excitable Membranes, 3rd Ed., Sinauer Associates Inc., Sunderland, MA, 2001.

[17] P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, 1993.

[18] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels, J. Phys. Chem. B 116 (2012) 11422-11441.

[19] M. Hoyles, S. Kuyucak, and S.-H. Chung, Energy barrier presented to ions by the vestibule of the biological membrane channel, Biophys. J. 70 (1996) 1628-1642.

[20] J. W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the stationary van Roosbroeck system, SIAM J. Appl. Math. 45 (1985) 565-590. | Zbl 0611.35026

[21] T. Kerkhoven, A proof of convergence of Gummel’s algorithm for realistic device geometries, SIAM J. Numer. Anal. 23 (1986) 1121-1137. | Zbl 0613.65129

[22] Y. Li, J.-L. Liu, S.M. Sze, and T.-S. Chao, A new parallel adaptive finite volume method for the numerical simulation of semiconductor devices, Comput. Phys. Commun. 142 (2001) 285-289. | Zbl 0985.82006

[23] J.-L. Liu, Numerical methods for the Poisson-Fermi equation in electrolytes, J. Comput. Phys. 247 (2013) 88-99.

[24] J.-L. Liu and B. Eisenberg, Correlated ions in a calcium channel model: a Poisson-Fermi theory, J. Phys. Chem. B 117 (2013) 12051-12058. [WoS]

[25] J.-L. Liu and B. Eisenberg, Analytical models of calcium binding in a calcium channel, J. Chem. Phys. 141 (2014) 075102. [WoS]

[26] J.-L. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels, J. Chem. Phys. 141 (2014) 22D532. [WoS]

[27] J.-L. Liu and B. Eisenberg, Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels, Phys. Rev. E 92 (2015) 012711. [WoS]

[28] J.-L. Liu and B. Eisenberg, Poisson-Fermi model of single ion activities in aqueous solutions, Chem. Phys. Lett. 637 (2015) 1-6. [Crossref]

[29] D. L. Scharfetter and H. K. Gummel, Large-signal analysis of a silicon Read diode oscillator, IEEE Trans. Elec. Dev. ED-16 (1969) 64-77.

[30] J. R. Silva and Y. Rudy, Multi-scale electrophysiology modeling: from atom to organ, J. Gen. Physiol. 135 (2010) 575-581. [WoS]

[31] J. W. Slotboom, Computer-aided two-dimensional analysis of bipolar transistors, IEEE Trans. Elec. Dev. ED-20 (1973) 669- 679.