Curvature Concentrations on the HIV-1 Capsid
Jiangguo Liu ; Farrah Sadre-Marandi ; Simon Tavener ; Chaoping Chen
Molecular Based Mathematical Biology, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

It is known that the retrovirus capsids possess a fullerene-like structure. These caged polyhedral arrangements are built entirely from hexagons and exactly 12 pentagons according to the Euler theorem. Viral capsids are composed of capsid proteins, which create the hexagon and pentagon shapes by groups of six (hexamer) and five (pentamer) proteins. Different distributions of these 12 pentamers result in icosahedral, tubular, or conical shaped capsids. These pentamer clusters introduce declination and hence curvature on the capsids. This paper provides explicit and quantitative characterization of curvature on virus capsids. The concept of curvature concentration is also introduced. For the HIV (5,7)-cone, it is shown that the curvature concentration at the narrow end is about at least four times higher than that at the broad end. Our modeling results about curvature concentrations on HIV-1 capsids echo the results in the literature that the pentamers are in the regions with the highest stress, although the connection between the two approaches (curvature concentration and stress) is to be explored. This also leads to a conjecture that “HIV-1 capsid narrow end may close last during maturation but open first during entry into a host cell".

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270838
@article{bwmeta1.element.doi-10_1515_mlbmb-2015-0003,
     author = {Jiangguo Liu and Farrah Sadre-Marandi and Simon Tavener and Chaoping Chen},
     title = {Curvature Concentrations on the HIV-1 Capsid},
     journal = {Molecular Based Mathematical Biology},
     volume = {3},
     year = {2015},
     zbl = {06524337},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_mlbmb-2015-0003}
}
Jiangguo Liu; Farrah Sadre-Marandi; Simon Tavener; Chaoping Chen. Curvature Concentrations on the HIV-1 Capsid. Molecular Based Mathematical Biology, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_mlbmb-2015-0003/

[1] G.D. Bailey, J.-K. Hyun, A.K. Mitra, R.L. Kingston, A structural model for the generation of continuous curvature on the surface of a retroviral capsid, J. Mol. Biol., 417(2012), pp. 212–223. [WoS]

[2] J. Benjamin, B.K. Ganser-Pornillos, W.F. Tivol, W.I. Sundquist, G.J. Jensen, Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography, J. Mol. Biol., 346(2005), pp. 577–588.

[3] J.A.G. Briggs, T. Wilk, R. Welker, H.-G. Kräusslich, S.D. Fuller, Structural organization of authentic, mature HIV-1 virions and cores, EMBO J., 22(2003), pp. 1707–1715. [Crossref]

[4] J.A.G. Briggs, K. Grünewald, B. Glass, F. Förster, H.-G. Kräusslich, S.D. Fuller, The mechanismof HIV-1 core assembly: Insights from three-dimensional reconstructions of authentic virions, Structure, 14(2006), pp. 15–20.

[5] J.A.G. Briggs, H.-G. Kräusslich, The molecular architecture of HIV, J. Mol. Biol., 410(2011), pp. 491–500.

[6] I.J. Byeon, X. Meng, J. Jung, G. Zhao, R. Yang, J. Ahn, J. Shi, J. Concel, C. Aiken, P. Zhang, A.M. Gronenborn, Structural convergence between cryo-EM and NMR reveals intersubunit interations critical for HIV-1 capsid function, Cell, 139(2009), pp. 780– 790. [WoS]

[7] D.L. Caspar, A. Klug, Physical principles in the construction of regular viruses, Cold Spring Harb. Symp. Quant. Biol., 27(1962), pp. 1–24. [Crossref]

[8] B. Chen, R. Tycko, Simulated self-assembly of the HIV-1 capsid: Protein shape and native contacts are suflcient for twodimensional lattice formation, Biophys. J., 100(2011), pp. 3035–3044. [Crossref]

[9] L.S. Ehrlich, T. Liu, S. Scarlata, B. Chu, C.A. Carter, HIV-1 capsid protein forms spherical (immature-like) and tubular (maturelike) particles in vitro: Structure switching by pH-induced conformational changes, Biophys. J., 81(2001), pp. 586–594.

[10] B.K. Ganser-Pornillos, A. Cheng, M. Yeager, Structure of full-length HIV-1 CA: A model for the mature capsid lattice, Cell, 131(2007), pp. 70–79. [WoS]

[11] B.K. Ganser, S. Li, V.Y. Klishko, J.T. Finch,W.I. Sundquist, Assembly and analysis of conical models for the HIV-1 core, Science, 283(1999), No. 5398, pp. 80–83.

[12] B.K. Ganser-Pornillos, U.K. von Schwedler, K.M. Stray, C. Aiken, W.I. Sundquist, Assembly properties of the human immunodeficiency virus type 1 CA protein, J. Virol., 78(2004), pp. 2545–2552.

[13] B.K. Ganser-Pornillos, M. Yeager,W.I. Sundquist, The structural biology of HIV assembly, Curr. Opin. Struct. Biol., 18(2008), pp. 203–217. [Crossref]

[14] B.K. Ganser-Pornillos, M. Yeager, O. Pornillos, Assembly and architecture of HIV, Adv. Exp. Med. Biol., 726(2012), pp. 441– 465.

[15] Y. Gogotsi, Nanomaterials Handbook, CRC Press, (2006).

[16] J.M. Grime, G.A. Voth, Early stages of the HIV-1 capsid protein lattice formation, Biophys. J., 103(2012), pp. 1774–1783.

[17] M.F. Hagan, Modeling viral capsid assembly, Adv. Chem. Phys., 155(2014), pp. 1–68.

[18] J.B. Heymann, C. Butan, D.C. Winkler, R.C. Craven, A.C. Steven, Irregular and semi-regular polyhedral models for Rous sarcoma virus cores, Comput. Math. Meth. Med., 9(2008), pp. 197–210. [WoS][Crossref] | Zbl 1160.92021

[19] S.D. Hicks, C.L. Henley, Irreversible growth model for virus capsid assembly, Phys. Rev. E, 74(2006), pp. 031912:1–17.

[20] R.W. Horne, P. Wildy, Symmetry in virus architecture, Virology, 15(1961), pp. 348-373.

[21] L. Huang, C. Chen, Understanding HIV-1 protease autoprocessing for novel therapeutic development, Future Med. Chem., 5(2013), pp. 1215–1129.

[22] A. Levandovsky, R. Zandi, Nonequilibrium assembly, retroviruses, and conical structures, Phys. Rev. Lett., 102(2009), pp. 198102:1–4. [WoS]

[23] R.V.Mannige, C.L. Brooks, III, Tilable nature of virus capisds and the role of topological constraints in natural capsid design, Phys. Rev. E, 77(2008), pp. 051902:1–8. [WoS]

[24] R.V.Mannige, C.L. Brooks III, Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling, PNAS, 106(2009), pp. 8531–8536.

[25] R.V. Mannige, C.L. Brooks III, Periodic table of virus capsids: Implications for natural selection and design, PLoS One, 5(2010), pp. e9423:1–7.

[26] T.T. Nguyen, R.F. Bruinsma, W.M. Gelbart, Elasticity theory and shape transitions of viral shells, Phys. Rev. E, 72(2005), pp. 051923:1–19.

[27] T.T. Nguyen, R.F. Bruinsma,W.M. Gelbart, Continuum theory for retroviral capsids, Phys. Rev. Lett., 96(2006), pp. 078102:1– 4.

[28] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1: Dynamics in vivo, SIAM Review, 41(1999), pp. 3–44. | Zbl 1078.92502

[29] O. Pornillos, B.K. Ganser-Pornillos, B.N. Kelly, Y. Hua, F.G. Whitby, C.D. Stout, W.I. Sundquist, C.P. Hill, M. Yeager, X-ray structures of the hexameric building block of the HIV capsid, Cell, 137(2009), pp. 1282–1292. [WoS]

[30] O. Pornillos, B.K. Ganser-Pornillos, S. Banumathi, Y. Hua, M. Yeager, Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus, J. Mol. Biol., 401(2010), pp. 985–995. [WoS]

[31] O. Pornillos, B.K. Ganser-Pornillos, M. Yeager, Atomic level modeling of the HIV capsid, Nature, 469(2011), pp. 424–427. [WoS]

[32] A. Pressley, Elementary Differential Geometry, 2nd ed., Springer, (2010). | Zbl 1191.53002

[33] F. Sadre-Marandi, J. Liu, S. Tavener, C. Chen, Generating vectors for the lattice structures of tubular and conical viral capsids, Mol. Based Math. Biol., 2(2014), pp. 128–140.

[34] A. Siber, Continuum and all-atom description of the energies of graphene nanocones, Nanotech., 18(2007), pp. 375705. [Crossref]

[35] W.I. Sundquist, H.-G. Kräusslich, HIV-1 assembly, budding, and maturation, Cold Spring Harb. Perspect Med., 2(2012), a006924 [WoS]

[36] R. Twarock, Mathematical virology: a novel approach to the structure and assembly of viruses, Phil. Trans. R. Soc. A, 364(2006), pp. 3357-3373. | Zbl 1154.92314

[37] M. Yeager, Design of in vitro symmetric complexes and analysis by hybrid methods reveal mechanisms of HIV capsid assembly, J. Mol. Biol., 410(2011), pp. 534–552.

[38] Z. Yu, M.J. Dobro, C.L. Woodward, A. Levandovsky, C.M. Danielson, V. Sandrin, J. Shi, C. Aiken, R. Zandi, T.J. Hope, G.J. Jensen, Unclosed HIV-1 capsids suggest a curled sheet model of assembly, J. Mol. Biol., 425(2013), pp. 112–123. [WoS]

[39] R. Zandi, D. Reguera, R.F. Bruinsma, W.M. Gelbart, J. Rudnick, Origin of icosahedral symmetry in viruses, PNAS, 101(2004), pp. 15556–15560.

[40] R. Zandi, D. Reguera, Mechanical properties of viral capsids, Phys. Rev. E, 72(2005), pp. 021917:1–12.

[41] G. Zhao, J. Perilla, E. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A. Gronenborn, K. Schulten, C. Aiken, P. Zhang,Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics, Nature, 497(2013), pp. 643–646.