Initiation and termination of intraseasonal oscillations in nonlinear Laplacian spectral analysis-based indices
Eniko Székely ; Dimitrios Giannakis ; Andrew J. Majda
Mathematics of Climate and Weather Forecasting, Tome 2 (2016), p. 1-25 / Harvested from The Polish Digital Mathematics Library

We present a statistical analysis of the initiation and termination of boreal winter and boreal summer intraseasonal oscillations (ISOs). This study uses purely convection (infrared brightness temperature) data over a 23-year time interval from 1984–2006. The indices are constructed via the nonlinear Laplacian spectral analysis (NLSA) method and display high intermittency and non-Gaussian statistics. We first define primary, terminal, and full events in the NLSA-based indices, and then examine their statistics through the associated two-dimensional phase space representations. Roughly one full event per year was detected for the Madden-Julian oscillation (MJO), and 1.3 full events per year for the boreal summer ISO.We also find that 91%of the recovered full MJO events are circumnavigating and exhibit very little to no retrograde (westward) propagation. The Indian Ocean emerges as the most active region in terms of both the onset and decay of events, however relevant activity occurs over all phases, consistent with previous work.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285871
@article{bwmeta1.element.doi-10_1515_mcwf-2016-0001,
     author = {Eniko Sz\'ekely and Dimitrios Giannakis and Andrew J. Majda},
     title = {Initiation and termination of intraseasonal oscillations in nonlinear Laplacian spectral analysis-based indices},
     journal = {Mathematics of Climate and Weather Forecasting},
     volume = {2},
     year = {2016},
     pages = {1-25},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_mcwf-2016-0001}
}
Eniko Székely; Dimitrios Giannakis; Andrew J. Majda. Initiation and termination of intraseasonal oscillations in nonlinear Laplacian spectral analysis-based indices. Mathematics of Climate and Weather Forecasting, Tome 2 (2016) pp. 1-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_mcwf-2016-0001/

[1] Aubry, N., Lian, W.-Y., and Titi, E. S. (1993). Preserving symmetries in the proper orthogonal decomposition. SIAM J. Sci. Comput., 14, 483–505. | Zbl 0774.65084

[2] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput., 15, 1373–1396. [Crossref] | Zbl 1085.68119

[3] Berry, T., Cressman, R., Greguric Ferencek, Z., and Sauer, T. (2013). Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Sys., 12, 618–649. [WoS] | Zbl 1291.37101

[4] Broomhead, D. S. and King, G. P. (1986). Extracting qualitative dynamics from experimental data. Phys. D, 20(2–3), 217–236. | Zbl 0603.58040

[5] Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Appl. Comput. Harmon. Anal., 21, 5–30. [Crossref][WoS] | Zbl 1095.68094

[6] Ghil, M. et al. (2002). Advanced spectral methods for climatic time series. Rev. Geophys., 40.

[7] Giannakis, D. and Majda, A. J. (2012). Nonlinear Laplacian spectral analysis for time series with intermittency and lowfrequency variability. Proc. Natl. Acad. Sci., 109(7), 2222–2227. [Crossref] | Zbl 1256.62053

[8] Giannakis, D. and Majda, A. J. (2013). Nonlinear Laplacian spectral analysis: Capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat. Anal. Data Min., 6(3), 180–194. [WoS]

[9] Giannakis, D. andMajda, A. J. (2014). Data-driven methods for dynamical systems: Quantifying predictability and extracting spatiotemporal patterns. In R. Melnik, editor,Mathematical and ComputationalModeling:With Applications in Engineering and the Natural and Social Sciences, page 288. Wiley, Hoboken.

[10] Goswami, B. N. (2011). South Asian monsoon. InW. Lau and D.Waliser, editors, Intraseasonal Variability of the Atmosphere- Ocean Climate System, pages 21–64. Springer.

[11] Hendon, H. H. and Salby, M. L. (1994). The life cycle of the Madden-Julian oscillation. Journal of the Atmospheric Sciences, 51(15), 2225–2237. [WoS]

[12] Hendon, H. H., Wheeler, M. C., and Zhang, C. (2007). Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543. [WoS][Crossref]

[13] Hodges, K., Chappell, D., Robinson, G., and Yang, G. (2000). An improved algorithm for generating globalwindowbrightness temperatures from multiple satellite infra-red imagery. J. Atmos. Oceanic Technol., 17, 1296–1312. [Crossref]

[14] Hung, M.-P., Lin, J.-L., Wang, W., Kim, D., Shinoda, D., and Weaver, S. J. (2013). MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 6185–6214. [WoS][Crossref]

[15] Kessler, W. (2011). The oceans. In W. K. Lau and D. E. Waliser, editors, Intraseasonal Variability in the Atmosphere-Ocean Climate System, pages 199–236. Springer.

[16] Kessler, W. S. (2001). EOF representations of the Madden-Julian Oscillation and its connection with ENSO. J. Climate, 14, 3055–3061. [Crossref]

[17] Khouider, B. and Majda, A. (2006). A simple multicloud parameterization for convectively coupled tropical waves. part I: Linear analysis. Journal of the Atmospheric Sciences, 63, 1308–1323. [WoS]

[18] Kikuchi, K. and Wang, B. (2010). Spatiotemporal wavelet transform and the multiscale behavior of the Madden-Julian oscillation. J. Climate, 23, 3814–3834. [Crossref][WoS]

[19] Kikuchi, K., Wang, B., and Kajikawa, Y. (2012). Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000.

[20] Kiladis, G. N., Straub, K. H., and T., H. P. (2005). Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62, 2790–2809. [Crossref]

[21] Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., and Ventrice, M. J. (2014). A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715. [WoS]

[22] Lau,W. K. M. andWaliser, D. E. (2011). Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer-Verlag, Berlin.

[23] Lee, J.-Y.,Wang, B., Wheeler, M., Xiouhua, F.,Waliser, D., and Kang, I.-S. (2013). Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 40, 493–509. [Crossref][WoS]

[24] Ling, J., Li, C., Zhou, W., and Jia, X. (2014). To begin or not to begin? A case study on the MJO initiation problem. Theoretical and Applied Climatology, 115(1-2), 231–241. [WoS][Crossref]

[25] Lo, F. and Hendon, H. (2000). Empirical extended-range prediction of the Madden-Julian oscillation. Mon. Wea. Rev., 128.

[26] Madden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28(5).

[27] Madden, R. A. and Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29(6), 1109–1123. [Crossref]

[28] Maloney, E. D. and Hartmann, D. L. (1998). Frictional moisture convergence in a composite life cycle of the Madden-Julian oscillation. J. Climate, 11, 2387–2403. [Crossref]

[29] Matthews, A. J. (2008). Primary and successive events in the Madden–Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 134(631), 439–453. [WoS]

[30] Packard, N. H. et al. (1980). Geometry from a time series. Phys. Rev. Lett., 45, 712–716. [Crossref]

[31] Roundy, P. E. and Schreck, C. J. I. (2009). A combined wavenumber–frequency and time-extended EOF approach for tracking the progress of modes of large-scale organized tropical convection. Q. J. R. Meteorol. Soc., 135, 161–173. [WoS]

[32] Sauer, T., Yorke, J. A., and Casdagli, M. (1991). Embedology. J. Stat. Phys., 65(3–4), 579–616. [Crossref] | Zbl 0943.37506

[33] Shabbar, A. and Yu, B. (2009). The 1998–2000 la niña in the context of historically strong la niña events. Journal of Geophysical Research: Atmospheres, 114(D13). [WoS]

[34] Stachnik, J., Waliser, D., and Majda, A. J. (2015). Precursor environmental conditions associated with the termination of Madden–Julian oscillation events. J. Atmos. Sci., 72, 1908–1931. [WoS][Crossref]

[35] Straub, K. H. (2013). MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 1130–1151. [Crossref][WoS]

[36] Székely, E., Giannakis, D., andMajda, A. J. (2015). Extraction and predictability of coherent intraseasonal signals in infrared brightness temperature data. Climate Dyn., 46(5), 1473–1502.

[37] Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, volume 898 of Lecture Notes in Mathematics, pages 366–381. Springer, Berlin.

[38] Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 1055–1096. [Crossref]

[39] Tung, W.-w., Giannakis, D., and Majda, A. J. (2014). Symmetric and antisymmetric signals in MJO deep convection. Part I: Basic modes in infrared brightness temperature. J. Atmos. Sci., 71, 3302–3326. [WoS][Crossref]

[40] Ventrice, M. Wheeler, M., Hendon, H., Schreck, C., Thorncroft, C., and Kiladis, G. (2013). A modified multivariate Madden- Julian oscillation index using velocity potential. Mon. Wea. Rev., 141(12), 4197–4210. [WoS]

[41] Waliser, D. (2011). Predictability and forecasting. In W. K. Lau and D. E. Waliser, editors, Intraseasonal Variability in the Atmosphere-Ocean Climate System, pages 433–468. Springer.

[42] Wang, B. and Rui, H. (1990). Synoptic climatology of transient tropical intraseasonal convection a nomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61.

[43] Wheeler, M. and Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56(3), 374–399. [WoS][Crossref]

[44] Wheeler, M. C. and Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132(8), 1917–1932.

[45] Yoneyama, K., Zhang, C., and Long, C. N. (2013). Tracking pulses of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891. [Crossref]

[46] Zhang, C. (2005). The Madden-Julian oscillation. Rev. Geophys., 43, RG2003. [WoS][Crossref]

[47] Zhang, C. (2013). Madden-Julian oscillation: bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870. [Crossref]

[48] Zhang, C. and Gottschalck, J. (2002). SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific. Journal of Climate, 15, 2429–2445. [Crossref]