A Suite of Skeleton Models for the MJO with Refined Vertical Structure
Sulian Thual ; Andrew J. Majda
Mathematics of Climate and Weather Forecasting, Tome 1 (2015), / Harvested from The Polish Digital Mathematics Library

The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. The skeleton model is a minimal dynamical model that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly 5 ms−1, (II) a peculiar dispersion relation with dw/dk ≈ 0, and (III) a horizontal quadrupole vortex structure. This model depicts the MJO as a neutrally-stable atmosphericwave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture and the planetary envelope of synoptic-scale activity. Here we propose and analyze a suite of skeleton models that qualitatively reproduce the refined vertical structure of the MJO in nature. This vertical structure consists of a planetary envelope of convective activity transitioning from the congestus to the deep to the stratiform type, in addition to a front-to-rear (i.e. tilted) structure of heating, moisture, winds and temperature. A first example of skeleton model achieving this goal has been considered recently in work by the authors. The construction of such a model satisfies an energy conservation principle, such that its solutions at the intraseasonal-planetary scale remain neutrally stable. Here, additional classes of skeleton models are constructed based on the same principle. In particular, those new models are more realistic then the former one as they consider fully coupled interactions between the planetary dry dynamics of the first and second baroclinic mode and the details of the vertical structure of moisture and convective activity. All models reproduce qualitatively the refined vertical structure of the MJO. In addition,when considered with a simple stochastic parametrization for the unresolved details of synopticscale activity, all models show intermittent initiation, propagation and shut down of MJO wave trains, as in previous studies.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276565
@article{bwmeta1.element.doi-10_1515_mcwf-2015-0004,
     author = {Sulian Thual and Andrew J. Majda},
     title = {A Suite of Skeleton Models for the MJO with Refined Vertical Structure},
     journal = {Mathematics of Climate and Weather Forecasting},
     volume = {1},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_mcwf-2015-0004}
}
Sulian Thual; Andrew J. Majda. A Suite of Skeleton Models for the MJO with Refined Vertical Structure. Mathematics of Climate and Weather Forecasting, Tome 1 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_mcwf-2015-0004/

[1] S. Ajayamohan, B. Khouider, and Andrew J. Majda. Realistic initiation and dynamics of the Madden-Julian Oscillation in a coarse resolution aquaplanet GCM. Geophys. Res. Lett., 40:6252–6257, 2013. [Crossref][WoS]

[2] Joseph A. Biello and Andrew J.Majda. A NewMultiscale Model for theMadden-Julian Oscillation. J. Atmos. Sci., 62(6):1694– 1721, 2005. [Crossref]

[3] Joseph A. Biello and Andrew J. Majda. Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden-Julian oscillation. Dyn. Atm. Oceans, 42, Issue 1-4:152–215, 2006.

[4] N. Chen and A. J. Majda. Filtering the Stochastic Skeleton Model for the Madden-Julian Oscillation. 2015. in press.

[5] N. Chen, A. J. Majda, and D. Giannakis. Predicting the cloud patterns of the madden-julian oscillation through a low-order nonlinear stochastic model. GRL, page DOI: 10.1002/2014GL060876, 2014. [Crossref]

[6] Q. Deng, B. Khouider, and A. J. Majda. The MJO in a Coarse-Resolution GCM with a Stochastic Multicloud Parameterization. J. Atmos. Sci., 72, 2015. 55-74. [WoS]

[7] Yevgeniy Frenkel, Andrew J. Majda, and Boualem Khouider. Using the Stochastic Multicloud Model to Improve Tropical Convective Parameterization: A Paradigm Example. J. Atmos. Sci., 69:1080–1105, 2012. [WoS][Crossref]

[8] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, 1994. 442pp. | Zbl 0862.60050

[9] Daniel T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem., 81(25):2340–2361, 1977. [Crossref]

[10] Harry H. Hendon and Murry L. Salby. The Life Cycle of the Madden-Julian Oscillation. J. Atmos. Sci., 51:2225–2237, 1994. [Crossref]

[11] X. Jiang, D. E. Waliser, and coauthors. Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 2015. doi:10.1002/2014JD022375. [WoS][Crossref]

[12] B. Khouider, J. A. Biello, and A. J.Majda. A StochasticMulticloud Model for Tropical Convection. Comm.Math. Sci., 8(1):187– 216, 2010. | Zbl 1190.86003

[13] B. Khouider and A. J. Majda. A simple multicloud parametrization for convectively coupled tropical waves. Part I: Linear Analysis. J. Atmos. Sci., 63:1308–1323, 2006. [Crossref]

[14] B. Khouider and A. J. Majda. A simple multicloud parametrization for convectively coupled tropical waves. Part II. Nonlinear simulations. J Atmos Sci, 64:381–400, 2007. [Crossref][WoS]

[15] B. Khouider and A. J.Majda. Equatorial convectively coupled waves in a simple multicloud model. J AtmSci, (65):3376–3397, 2008.

[16] Boualem Khouider and Andrew J. Majda. Multicloud Models for Organized Tropical Convection: Enhanced Congestus Heating. J. Atmos. Sci., 65(3):895–914, 2008. [WoS][Crossref]

[17] Boualem Khouider, Amik St-Cyr, Andrew J. Majda, and Joseph Tribbia. The MJO and convectively coupled waves in a coarseresolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68(2):240–264, 2011. [Crossref][WoS]

[18] K. Kikuchi and Y. N. Takayabu. The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, 2004. L10101,doi:10.1029/2004GL019601. [Crossref]

[19] G. N. Kiladis, K. H. Straub, and Haertel P. T. Zonal and vertical structure of the Madden-Julian oscillation. J Atmos Sci, 62:2790–2809, 2005. [Crossref]

[20] N.P. Klingaman, X. Jiang, and coauthors. Vertical structure and physical processes of the Madden-Julian oscillation: Synthesis and summary. J. Geophys. Res., 2015. doi:10.1002/2015JD023196. [WoS][Crossref]

[21] Gregory F. Lawler. Introduction to Stochastic Processes. Chapman and Hall/CRC, 2006. 192pp. | Zbl 1105.60003

[22] R. E. Madden and P. R. Julian. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28:702–708, 1971.

[23] R. E. Madden and P. R. Julian. Observations of the 40-50 day tropical oscillation-A review. Mon. Wea. Rev., 122:814–837, 1994.

[24] A. J. Majda and J. A. Biello. A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101:4736– 4741, 2004. [Crossref] | Zbl 1063.86004

[25] A. J.Majda, S. N. Stechmann, and B. Khouider. Madden-Julian oscillation analog and intraseasonal variability in amulticloud model above the equator. Proc. Natl. Acad. Sci. USA, 104:9919–9924, 2007. [Crossref] | Zbl 1155.86310

[26] Andrew J. Majda and Samuel N. Stechmann. A Simple Dynamical Model with Features of Convective Momentum Transport. J. Atmos. Sci., 66:373–392, 2009. [WoS][Crossref]

[27] Andrew J. Majda and Samuel N. Stechmann. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci., 106:8417–8422, 2009. [Crossref]

[28] Andrew J. Majda and Samuel N. Stechmann. Nonlinear Dynamics and Regional Variations in the MJO Skeleton. J. Atmos. Sci., 68:3053–3071, 2011. [Crossref][WoS]

[29] A. J. Matthews. Primary and successive events in the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134:439–453, 2008. [Crossref][WoS]

[30] T. Miyakawa, Y.N. Takayabu, T. Nasuno, H. Miura, M. Satoh, and M.W. Moncrieff. Convective momentum transport by rainbands within a Madden-Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. J. Atmos. Sci., 69:1317–1338, 2012. [Crossref][WoS]

[31] M. W. Moncrieff, M. Shapiro, J. Slingo, and F. Molteni. Collaborative research at the intersection of weather and climate. WMO Bull., 56:204–211, 2007.

[32] MW Moncrieff. Analytic representation of the large-scale organization of tropical convection. Quart. J. Roy. Meteor. Soc., 130:1521–1538, 2004.

[33] J. D. Neelin and N. Zeng. A quasi-equilibrium tropical circulation model:formulation. J. Atmos. Sci., 57:1741–1766, 2000. [Crossref]

[34] H. R. Ogrosky and S. N. Stechmann. The mjo skeleton model with observation-based background state and forcing. Q. J. Roy. Met. Soc., 2015. DOI: 10.1002/qj.2552. [Crossref]

[35] A. H. Sobel, J. Nilsson, and L. M. Polvani. The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves. J. Atmos. Sci., 58:3650–3665, 2001. [Crossref]

[36] J. P. Stachnik, D. E.Waliser, and A.J.Majda. Precursor environmental conditions associated with the termination ofmaddenjulian oscillation events. J. Atmos. Sci., 2015. doi: http://dx.doi.org/10.1175/JAS-D-14-0254.1. [Crossref]

[37] S. Stechmann, A. J. Majda, and D. Skjorshammer. Convectively coupled wave-environment interactions. Theor. Comp. Fluid Dyn., 27:513–532, 2013. [Crossref]

[38] S. N. Stechmann and A. J.Majda. Identifying the skeleton of themadden-julian oscillation in observational data. Mon. Wea. Rev., 143:395–416, 2015. [WoS]

[39] S. Thual and A. J. Majda. A skeleton model for the MJO with refined vertial structure. Clim. Dyn., 2015. accepted.

[40] S. Thual, A.-J. Majda, and S. N. Stechmann. Asymmetric intraseasonal events in the skeleton MJO model with seasonal cycle. Clim. Dyn., 2015. doi:10.1007/s00382-014-2256-8. [Crossref][WoS]

[41] S. Thual, Andrew J. Majda, and S. N. Stechmann. A stochastic skeleton model for the MJO. J. Atmos. Sci., 71:697–715, 2014. [Crossref]

[42] B. Tian, D. Waliser, E. Fetzer, B. Lambrigsten, Y. Yung, and B. Wang. Vertical moist thermodynamic structure and spatialtemporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63:2462–2485, 2006. [Crossref]

[43] Matthew Wheeler and George N. Kiladis. Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber-Frequency Domain. J. Atmos. Sci., 56:374–399, 1999. [Crossref][WoS]

[44] P. K. Xavier, J. C. Petch, and coauthors. Vertical structure and physical processes of the Madden-Julian Oscillation: Biases and uncertainties at short range. J. Geophys. Res., 2015. doi:10.1002/2014JD022718. [Crossref][WoS]

[45] Chidong Zhang. Madden-Julian Oscillation. Rev. Geophys., 43, 2005. RG2003, doi:10.1029/2004RG000158. [Crossref]