Evaluation of the convolution sums ∑ al + bm = n lσ(l)σ(m) withab≤ 9
Yoon Kyung Park
Open Mathematics, Tome 15 (2017), p. 1389-1399 / Harvested from The Polish Digital Mathematics Library

The generating functions of divisor functions are quasimodular forms of weight 2 and their products belong to a space of quasimodular forms of higher weight. In this article, we evaluate the convolution sums ∑al+bm=nlσ(l)σ(m) al+bm=nlσ(l)σ(m) for all positive integers a, b and n with ab ≤ 9 and gcd(a, b) = 1.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288526
@article{bwmeta1.element.doi-10_1515_math-2017-0116,
     author = {Yoon Kyung Park},
     title = {Evaluation of the convolution sums $\sum$ al + bm = n l$\sigma$(l)$\sigma$(m) withab$\leq$ 9},
     journal = {Open Mathematics},
     volume = {15},
     year = {2017},
     pages = {1389-1399},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2017-0116}
}
Yoon Kyung Park. Evaluation of the convolution sums ∑ al + bm = n lσ(l)σ(m) withab≤ 9. Open Mathematics, Tome 15 (2017) pp. 1389-1399. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2017-0116/