Multiplicity solutions of a class fractional Schrödinger equations
Li-Jiang Jia ; Bin Ge ; Ying-Xin Cui ; Liang-Liang Sun
Open Mathematics, Tome 15 (2017), p. 1010-1023 / Harvested from The Polish Digital Mathematics Library

In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations (−Δ)su+V(x)u=λf(x,u)inRN, (-Δ)su+V(x)u=λf(x,u) in N, where [...] (−Δ)su(x)=2limε→0∫RN∖Bε(X)u(x)−u(y)|x−y|N+2sdy,x∈RN (-Δ)su(x)=2limε0NBε(X)u(x)-u(y)|x-y|N+2sdy,xN is a fractional operator and s ∈ (0, 1). By using variational methods, we prove this problem has at least two nontrivial solutions in a suitable weighted fractional Sobolev space.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288528
@article{bwmeta1.element.doi-10_1515_math-2017-0084,
     author = {Li-Jiang Jia and Bin Ge and Ying-Xin Cui and Liang-Liang Sun},
     title = {Multiplicity solutions of a class fractional Schr\"odinger equations},
     journal = {Open Mathematics},
     volume = {15},
     year = {2017},
     pages = {1010-1023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2017-0084}
}
Li-Jiang Jia; Bin Ge; Ying-Xin Cui; Liang-Liang Sun. Multiplicity solutions of a class fractional Schrödinger equations. Open Mathematics, Tome 15 (2017) pp. 1010-1023. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2017-0084/