Boundedness of vector-valuedB-singular integral operators in Lebesgue spaces
Seyda Keles ; Mehriban N. Omarova
Open Mathematics, Tome 15 (2017), p. 987-1002 / Harvested from The Polish Digital Mathematics Library

We study the vector-valued B-singular integral operators associated with the Laplace-Bessel differential operator △B=∑k=1n−1∂ 2∂x k 2+(∂2∂x n 2+2vxn∂∂x n),v>0. B=k=1n-12xk2+(2xn2+2vxnxn),v>0. We prove the boundedness of vector-valued B-singular integral operators A from [...] Lp,v(R+n,H1)toLp,v(R+n,H2), Lp,v(+n,H1) to Lp,v(+n,H2), 1 < p < ∞, where H1 and H2 are separable Hilbert spaces.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288438
@article{bwmeta1.element.doi-10_1515_math-2017-0081,
     author = {Seyda Keles and Mehriban N. Omarova},
     title = {Boundedness of vector-valuedB-singular integral operators in Lebesgue spaces},
     journal = {Open Mathematics},
     volume = {15},
     year = {2017},
     pages = {987-1002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2017-0081}
}
Seyda Keles; Mehriban N. Omarova. Boundedness of vector-valuedB-singular integral operators in Lebesgue spaces. Open Mathematics, Tome 15 (2017) pp. 987-1002. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2017-0081/