The main purpose of this paper is to investigate the uniqueness of meromorphic functions that share two finite sets in the k-punctured complex plane. It is proved that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 5, such that any two admissible meromorphic functions f and g in Ω must be identical if EΩ(Sj, f) = EΩ(Sj, g)(j = 1,2).
@article{bwmeta1.element.doi-10_1515_math-2017-0063,
author = {Hong Yan Xu and San Yang Liu},
title = {The uniqueness of meromorphic functions ink-punctured complex plane},
journal = {Open Mathematics},
volume = {15},
year = {2017},
pages = {724-733},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2017-0063}
}
Hong Yan Xu; San Yang Liu. The uniqueness of meromorphic functions ink-punctured complex plane. Open Mathematics, Tome 15 (2017) pp. 724-733. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2017-0063/