In Hörmander inner product spaces, we investigate initial-boundary value problems for an arbitrary second order parabolic partial differential equation and the Dirichlet or a general first-order boundary conditions. We prove that the operators corresponding to these problems are isomorphisms between appropriate Hörmander spaces. The regularity of the functions which form these spaces is characterized by a pair of number parameters and a function parameter varying regularly at infinity in the sense of Karamata. Owing to this function parameter, the Hörmander spaces describe the regularity of functions more finely than the anisotropic Sobolev spaces.
@article{bwmeta1.element.doi-10_1515_math-2017-0008, author = {Valerii Los and Aleksandr Murach}, title = {Isomorphism theorems for some parabolic initial-boundary value problems in H\"ormander spaces}, journal = {Open Mathematics}, volume = {15}, year = {2017}, pages = {57-76}, zbl = {06694990}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2017-0008} }
Valerii Los; Aleksandr Murach. Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces. Open Mathematics, Tome 15 (2017) pp. 57-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2017-0008/