Let p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 for p3(n) by using some theta function identities. For example, we prove that for n ≥ 0, p3 (243n + 233) ≡ p3 (729n + 638) ≡ 0 (mod 310).
@article{bwmeta1.element.doi-10_1515_math-2016-0067, author = {Tao Yan Zhao and Lily J. Jin and C. Gu}, title = {Some congruences for 3-component multipartitions}, journal = {Open Mathematics}, volume = {14}, year = {2016}, pages = {783-788}, zbl = {1353.11102}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2016-0067} }
Tao Yan Zhao; Lily J. Jin; C. Gu. Some congruences for 3-component multipartitions. Open Mathematics, Tome 14 (2016) pp. 783-788. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2016-0067/