In this article we introduce and study the concept of α-almost Artinian modules. We show that each α-almost Artinian module M is almost Artinian (i.e., every proper homomorphic image of M is Artinian), where α ∈ {0,1}. Using this concept we extend some of the basic results of almost Artinian modules to α-almost Artinian modules. Moreover we introduce and study the concept of α-Krull modules. We observe that if M is an α-Krull module then the Krull dimension of M is either α or α + 1.
@article{bwmeta1.element.doi-10_1515_math-2016-0036, author = {Maryam Davoudian and Ahmad Halali and Nasrin Shirali}, title = {On$\alpha$-almost Artinian modules}, journal = {Open Mathematics}, volume = {14}, year = {2016}, pages = {404-413}, zbl = {06632369}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2016-0036} }
Maryam Davoudian; Ahmad Halali; Nasrin Shirali. Onα-almost Artinian modules. Open Mathematics, Tome 14 (2016) pp. 404-413. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2016-0036/