We obtain the global weighted Morrey-type regularity of the solution of the regular oblique derivative problem for linear uniformly parabolic operators with VMO coefficients. We show that if the right-hand side of the parabolic equation belongs to certain generalized weighted Morrey space Mp,ϕ(Q, w), than the strong solution belongs to the generalized weighted Sobolev- Morrey space [...] W˙2,1p,φ(Q,ω).
@article{bwmeta1.element.doi-10_1515_math-2016-0006, author = {Vagif S. Guliyev and Mehriban N. Omarova}, title = {Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces}, journal = {Open Mathematics}, volume = {14}, year = {2016}, pages = {49-61}, zbl = {1346.35086}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2016-0006} }
Vagif S. Guliyev; Mehriban N. Omarova. Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces. Open Mathematics, Tome 14 (2016) pp. 49-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2016-0006/