The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.
@article{bwmeta1.element.doi-10_1515_math-2015-0086, author = {Maryam Khorshidi and Mehdi Nadjafikhah and Hossein Jafari}, title = {Fractional derivative generalization of Noether's theorem}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0086} }
Maryam Khorshidi; Mehdi Nadjafikhah; Hossein Jafari. Fractional derivative generalization of Noether’s theorem. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0086/
[1] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, (San Diego, CA: Academic), 1999. | Zbl 0924.34008
[2] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (Series on Complexity, Nonlinearity and Chaos), World Scientific, 2012. | Zbl 1248.26011
[3] A.H. Bhrawy and M.A. Abdelkawy, J. Comput. Phys. 294, (2015), 462-483.
[4] H. Jafari, N. Kadkhoda, D. Baleanu , Nonlinear Dynamics, Vol. 81(3) 1569-1574, (2015).
[5] P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107. Springer, New York, 1993. | Zbl 0785.58003
[6] M. Nadjafikhah, V. Shirvani, J. Commun. Nonlinear Sci. Numer. Simul. 17, 14 pages (2012).
[7] A.R. Adem, B. Muatjetjeja, , Appl. Math. Lett. 48 109-117, (2015). [Crossref]
[8] R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk, J. Phys. Scr. T136, 014016 (2009).
[9] E. Noether, Math-phys. Klasse, 24 pages (1918), which originally appeared in Transport Theory and Statistical Physics, 1 (3), 25 pages (1971).
[10] M.A. Tavel, English translation of [9], http://arxiv.org/abs/physics/0503066v1.
[11] F. Riewe, Phys. Rev. E (3) 53 (2), 10 pages (1996).
[12] F. Riewe, Phys. Rev. E (3) 55 (3) (part B), 12 pages (1997).
[13] O.P. Agrawal, J. Math. Anal. Appl. 272 (1) 12 pages (2002).
[14] G.S.F. Frederico, D.F.M. Torres, J. Math. Anal. Appl. 334, 13 pages (2007).
[15] G.S.F. Frederico, D.F.M. Torres, J. Appl. Math. Comput. 217(3), 11 pages (2010).
[16] P.J. Torvik, R.L. Bagley, J.Applied Mechanics, Transactions of ASME, 51(2), 5 pages (1984). | Zbl 1203.74022
[17] P.J. Torvik, R.L. Bagley, AIAA Journal, 21(5), 8 pages (1983).
[18] M. Caputo, J. R. Astr. Soc. 13, 11 pages (1967).
[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. | Zbl 0818.26003
[20] M. Nadjafikhah, F. Ahangari, J. Commu. Theor. Phys.(Beijing), 59(3), 4 pages (2013).
[21] E.A. Rawashdeh, J. Appl. Math. Comput. 174(2) , 8 pages (2006).