Fractional derivative generalization of Noether’s theorem
Maryam Khorshidi ; Mehdi Nadjafikhah ; Hossein Jafari
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276401
@article{bwmeta1.element.doi-10_1515_math-2015-0086,
     author = {Maryam Khorshidi and Mehdi Nadjafikhah and Hossein Jafari},
     title = {Fractional derivative generalization of Noether's theorem},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0086}
}
Maryam Khorshidi; Mehdi Nadjafikhah; Hossein Jafari. Fractional derivative generalization of Noether’s theorem. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0086/

[1] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, (San Diego, CA: Academic), 1999. | Zbl 0924.34008

[2] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (Series on Complexity, Nonlinearity and Chaos), World Scientific, 2012. | Zbl 1248.26011

[3] A.H. Bhrawy and M.A. Abdelkawy, J. Comput. Phys. 294, (2015), 462-483.

[4] H. Jafari, N. Kadkhoda, D. Baleanu , Nonlinear Dynamics, Vol. 81(3) 1569-1574, (2015).

[5] P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107. Springer, New York, 1993. | Zbl 0785.58003

[6] M. Nadjafikhah, V. Shirvani, J. Commun. Nonlinear Sci. Numer. Simul. 17, 14 pages (2012).

[7] A.R. Adem, B. Muatjetjeja, , Appl. Math. Lett. 48 109-117, (2015). [Crossref]

[8] R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk, J. Phys. Scr. T136, 014016 (2009).

[9] E. Noether, Math-phys. Klasse, 24 pages (1918), which originally appeared in Transport Theory and Statistical Physics, 1 (3), 25 pages (1971).

[10] M.A. Tavel, English translation of [9], http://arxiv.org/abs/physics/0503066v1.

[11] F. Riewe, Phys. Rev. E (3) 53 (2), 10 pages (1996).

[12] F. Riewe, Phys. Rev. E (3) 55 (3) (part B), 12 pages (1997).

[13] O.P. Agrawal, J. Math. Anal. Appl. 272 (1) 12 pages (2002).

[14] G.S.F. Frederico, D.F.M. Torres, J. Math. Anal. Appl. 334, 13 pages (2007).

[15] G.S.F. Frederico, D.F.M. Torres, J. Appl. Math. Comput. 217(3), 11 pages (2010).

[16] P.J. Torvik, R.L. Bagley, J.Applied Mechanics, Transactions of ASME, 51(2), 5 pages (1984). | Zbl 1203.74022

[17] P.J. Torvik, R.L. Bagley, AIAA Journal, 21(5), 8 pages (1983).

[18] M. Caputo, J. R. Astr. Soc. 13, 11 pages (1967).

[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. | Zbl 0818.26003

[20] M. Nadjafikhah, F. Ahangari, J. Commu. Theor. Phys.(Beijing), 59(3), 4 pages (2013).

[21] E.A. Rawashdeh, J. Appl. Math. Comput. 174(2) , 8 pages (2006).