On V n -semigroups
Ze Gu ; Xilin Tang
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper, we give some new characterizations of orthodox semigroups in terms of the set of inverses of idempotents. As a generalization, a new class of regular semigroups, namely Vn-semigroups, is introduced. Also, we give a characterization of Vn-semigroups and investigate some properties of Vn-semigroups. Furthermore, we show that the class of Vn-semigroups is closed under direct products and homomorphic images. However, regular subsemigroups of Vn-semigroups (n ≥ 2) are not necessarily Vn-semigroups in general. Therefore, the class of Vn-semigroups (n ≥ 2) does not form an e-variety. Finally, we obtain that a E-solid semigroup S is a V2-semigroup if and only if S is orthodox.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276433
@article{bwmeta1.element.doi-10_1515_math-2015-0085,
     author = {Ze Gu and Xilin Tang},
     title = {
      On V
      n
      -semigroups
    },
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1341.20061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0085}
}
Ze Gu; Xilin Tang. 
      On V
      n
      -semigroups
    . Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0085/

[1] Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995 | Zbl 0835.20077

[2] Hall, T.E., On regular semigroups, Journal of Algebra, 1973, 24(1), 1-24 [Crossref] | Zbl 0262.20074

[3] Hall, T.E., On regular semigroups whose idempotents form a subsemigroup, Bulletin of the Australian Mathematical Society, 1969, 1(02), 195-208 [WoS] | Zbl 0172.31101

[4] Petrich, M., Inverse semigroups, Wiley, New York, 1984 | Zbl 0546.20053

[5] Petrich, M., Reilly, N.R., Completely regular semigroups, Wiley, New York, 1999 | Zbl 0967.20034

[6] Yamada, M., Structure of quasi-orthodox semigroups, Memoirs of the Faculty of Science Shimane University, 1980, 14, 1-18 | Zbl 0455.20042

[7] Blyth, T.S., McFadden, R.B., Regular semigroups with a multiplicative inverse transversal, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1982, 92, 253-270 | Zbl 0507.20026

[8] Tang, X.L., Regular semigroups with inverse transversals, Semigroup Forum, 1997, 55(1), 24-32 [WoS][Crossref] | Zbl 0897.20040

[9] Guo, X.J., Shum, K.P., Abundant semigroups with Q-adequate transversals and some of their special cases, Algebra Colloquium, 2007, 14, 687-704 [WoS][Crossref] | Zbl 1180.20050

[10] Tang, X.L., Identities for a class of regular unary semigroups, Communications in Algebra, 2008, 36, 2487-2502 [Crossref][WoS] | Zbl 1157.20036

[11] Tang, X.L., Free orthodox semigroups and free bands with inverse transversals, Science China Mathematics, 2010, 53(11), 3015- 3026 [WoS] | Zbl 1219.20039

[12] Tang, X.L., Gu, Z., Words on free bands with inverse transversals, Semigroup Forum, 2015, 91, 101-116 [WoS] | Zbl 1341.20061

[13] Wang, L.M., On congruence lattices of regular semigroups with Q-inverse transversals, Semigroup Forum, 1995, 50, 141-160 [Crossref] | Zbl 0828.20053

[14] Fitz-Gerald, D.G., On inverses of products of idempotents in regular semigroups, Journal of the Australian Mathematical Society, 1972, 13, 335-337 [Crossref] | Zbl 0244.20079

[15] Hall, T.E., Congruences and Green’s relations on regular semigroups, Glasgow Mathematical Journal, 1972, 13(02), 167-175 [Crossref] | Zbl 0257.20057