New properties of conformable derivative
Abdon Atangana ; Dumitru Baleanu ; Ahmed Alsaedi
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Recently, the conformable derivative and its properties have been introduced. In this work we have investigated in more detail some new properties of this derivative and we have proved some useful related theorems. Also, some new definitions have been introduced.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275883
@article{bwmeta1.element.doi-10_1515_math-2015-0081,
     author = {Abdon Atangana and Dumitru Baleanu and Ahmed Alsaedi},
     title = {New properties of conformable derivative},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0081}
}
Abdon Atangana; Dumitru Baleanu; Ahmed Alsaedi. New properties of conformable derivative. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0081/

[1] R. Khalil , M. Al Horani, A. Yousef and M. Sababheh “A new definition of fractional derivative” Journal of Computational and Applied Mathematics ,(2014) 65–70. | Zbl 1297.26013

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. | Zbl 1092.45003

[3] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993. | Zbl 0789.26002

[4] S. G. Samko, A. A. Kilbas, and O. I. Maritchev, Integrals and Derivatives of the Fractional Order and Some of Their Applications, in Russian, Nauka i Tekhnika, Minsk, Belarus, 1987.

[5] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, part II,” Geophysical Journal International, vol. 13, no. 5, pp. 529–539, 1967.

[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. | Zbl 1092.45003

[7] Abdon Atangana and Aydin Secer, “A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions,” Abstract and Applied Analysis, vol. 2013, Article ID 279681, 8 pages, 2013. doi:10.1155/2013/279681. | Zbl 1276.26010

[8] I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus and Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002. | Zbl 1042.26003

[9] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006.

[10] M. Davison and C. Essex, “Fractional differential equations and initial value problems,” The Mathematical Scientist, vol. 23, no. 2, pp. 108–116, 1998. | Zbl 0919.34005

[11] Abdon Atangana and Adem Kilicman, “Analytical Solutions of the Space-Time Fractional Derivative of Advection Dispersion Equation,” Mathematical Problems in Engineering, vol. 2013, Article ID 853127, 9 pages, 2013. doi:10.1155/2013/853127. | Zbl 1299.35058

[12] Abdon Atangana and P. D. Vermeulen, “Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation,” Abstract and Applied Analysis, vol. 2014, Article ID 381753, 11 pages, 2014. doi:10.1155/2014/381753.

[13] Abdon Atangana, “On the Singular Perturbations for Fractional Differential Equation,” The Scientific World Journal, vol. 2014, Article ID 752371, 9 pages, 2014. doi:10.1155/2014/752371

[14] Abdon Atangana and Innocent Rusagara, “On the Agaciro Equation via the Scope of Green Function,” Mathematical Problems in Engineering, vol. 2014, Article ID 201796, 8 pages, 2014. doi:10.1155/2014/201796.

[15] Y. Luchko and R. Gorenflo, The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivative, Preprint Series A08-98, Fachbereich Mathematik und Informatik, Freic Universität, Berlin, Germany, 1998. | Zbl 0940.45001

[16] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, 2012. | Zbl 1248.26011

[17] Thabet Abdeljawad. On the conformable fractional calculus.Journal of computational and Applied Mathematics, 279, pp. 57-66, 2015. [WoS] | Zbl 1304.26004

[18] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., vol.218, no.3 pp. 860-865, 2011. | Zbl 1231.26008

[19] D. R. Anderson and R. I. Avery, Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electronic Journal of Differential Equations, vol.2015 , no. 29, pp.1-10, 2015. | Zbl 1320.34006

[20] U. N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535v2.

[21] U. N. Katugampola, New approach to generalized fractional derivatives, B. Math. Anal. App., vol.6 no.4 pp. 1-15, 2014. | Zbl 1317.26008

[22] Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Three-point boundary value problems for conformable fractional differential equations. Journal of Function Spaces 2015 (2015), 706383, 6 pages [WoS] | Zbl 1325.34006

[23] Benkhettou, N., Hassani, S., Torres, D.F.M., A conformable fractional calculus on arbitrary time scales,Journal of King Saud University - Science, In Press, doi:10.1016/j.jksus.2015.05.003 [Crossref]